Entanglement thermodynamics for an excited state of Lifshitz system

  • Somdeb Chakraborty
  • Parijat Dey
  • Sourav Karar
  • Shibaji Roy
Open Access
Regular Article - Theoretical Physics


A class of (2+1)-dimensional quantum many body system characterized by an anisotropic scaling symmetry (Lifshitz symmetry) near their quantum critical point can be described by a (3+1)-dimensional dual gravity theory with negative cosmological constant along with a massive vector field, where the scaling symmetry is realized by the metric as an isometry. We calculate the entanglement entropy of an excited state of such a system holographically, i.e., from the asymptotic perturbation of the gravity dual using the prescription of Ryu and Takayanagi, when the subsystem is sufficiently small. With suitable identifications, we show that this entanglement entropy satisfies an energy conservation relation analogous to the first law of thermodynamics. The non-trivial massive vector field here plays a crucial role and contributes to an additional term in the energy relation.


Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  2. [2]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].MATHGoogle Scholar
  5. [5]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: A non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].CrossRefMATHGoogle Scholar
  6. [6]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetMATHGoogle Scholar
  7. [7]
    J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropya review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical Property of Entanglement Entropy for Excited States, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Ben-Ami, D. Carmi and J. Sonnenschein, Holographic Entanglement Entropy of Multiple Strips, JHEP 11 (2014) 144 [arXiv:1409.6305] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    W.-z. Guo, S. He and J. Tao, Note on Entanglement Temperature for Low Thermal Excited States in Higher Derivative Gravity, JHEP 08 (2013) 050 [arXiv:1305.2682] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement Thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  15. [15]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  18. [18]
    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    T. Andrade and S.F. Ross, Boundary conditions for metric fluctuations in Lifshitz, Class. Quant. Grav. 30 (2013) 195017 [arXiv:1305.3539] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    J. Bhattacharya and T. Takayanagi, Entropic Counterpart of Perturbative Einstein Equation, JHEP 10 (2013) 219 [arXiv:1308.3792] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Somdeb Chakraborty
    • 1
  • Parijat Dey
    • 1
  • Sourav Karar
    • 1
    • 2
  • Shibaji Roy
    • 1
  1. 1.Saha Institute of Nuclear PhysicsCalcuttaIndia
  2. 2.Scuola Normale SuperiorePisaItaly

Personalised recommendations