Advertisement

Duality and modularity in elliptic integrable systems and vacua of \( \mathcal{N}={1}^{\ast } \) gauge theories

  • Antoine Bourget
  • Jan Troost
Open Access
Regular Article - Theoretical Physics

Abstract

We study complexified elliptic Calogero-Moser integrable systems. We determine the value of the potential at isolated extrema, as a function of the modular parameter of the torus on which the integrable system lives. We calculate the extrema for low rank B,C,D root systems using a mix of analytical and numerical tools. For so(5) we find convincing evidence that the extrema constitute a vector valued modular form for the Γ0(4) congruence subgroup of the modular group. For so(7) and so(8), the extrema split into two sets. One set contains extrema that make up vector valued modular forms for congruence subgroups (namely Γ0(4), Γ(2) and Γ(3)), and a second set contains extrema that exhibit monodromies around points in the interior of the fundamental domain. The former set can be described analytically, while for the latter, we provide an analytic value for the point of monodromy for so(8), as well as extensive numerical predictions for the Fourier coefficients of the extrema. Our results on the extrema provide a rationale for integrality properties observed in integrable models, and embed these into the theory of vector valued modular forms. Moreover, using the data we gather on the modularity of complexified integrable system extrema, we analyse the massive vacua of mass deformed \( \mathcal{N}=4 \) supersymmetric Yang-Mills theories with low rank gauge group of type B, C and D. We map out their transformation properties under the infrared electric-magnetic duality group as well as under triality for \( \mathcal{N}={1}^{\ast } \) with gauge algebra so(8). We compare the exact massive vacua on \( {\mathbb{R}}^3\times {S}^1 \) to those found in a semi-classical analysis on \( {\mathbb{R}}^4 \). We identify several intriguing features of the quantum gauge theories.

Keywords

Supersymmetric gauge theory Integrable Field Theories Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  2. [2]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    E.J. Martinec and N.P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    E. D’Hoker and D.H. Phong, Spectral curves for super Yang-Mills with adjoint hypermultiplet for general Lie algebras, Nucl. Phys. B 534 (1998) 697 [hep-th/9804126] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997)3 [hep-th/9703166] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A.M. Uranga, Towards mass deformed N = 4 SO(N ) and Sp(k) gauge theories from brane configurations, Nucl. Phys. B 526 (1998) 241 [hep-th/9803054] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    I.P. Ennes, C. Lozano, S.G. Naculich and H.J. Schnitzer, Elliptic models and M-theory, Nucl. Phys. B 576 (2000) 313 [hep-th/9912133] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J.C. Hurtubise and E. Markman, Calogero-Moser systems and Hitchen systems, Commun. Math. Phys. 223 (2001) 533 [math/9912161] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    E. D’Hoker and D.H. Phong, Lectures on supersymmetric Yang-Mills theory and integrable systems, hep-th/9912271 [INSPIRE].
  12. [12]
    N. Dorey, An elliptic superpotential for softly broken N = 4 supersymmetric Yang-Mills theory, JHEP 07 (1999) 021 [hep-th/9906011] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].
  14. [14]
    S.P. Kumar and J. Troost, Geometric construction of elliptic integrable systems and N = 1* superpotentials, JHEP 01 (2002) 020 [hep-th/0112109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    S. Kim, K.-M. Lee, H.-U. Yee and P. Yi, The N = 1 theories on R 1,2 × S 1 with twisted boundary conditions, JHEP 08 (2004) 040 [hep-th/0403076] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Calogero and A.M. Perelomov, Properties of certain matrices related to the equilibrium configuration of the one-dimensional many-body problems with the pair potentials V 1(x) = − log | sin x| and V 2(x) = 1/ sin2 x, Commun. Math. Phys. 59 (1978) 109.ADSCrossRefGoogle Scholar
  17. [17]
    E. Corrigan and R. Sasaki, Quantum versus classical integrability in Calogero-Moser systems, J. Phys. A 35 (2002) 7017 [hep-th/0204039] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  18. [18]
    A.M. Perelomov, On frequencies of small oscillations of some dynamical systems associated with root systems, J. Nonlin. Math. Phys. 10 (2003) 103 [math-ph/0205039].MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    F. Calogero, Solution of the one-dimensional N body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971) 419 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    B. Sutherland, Exact results for a quantum many body problem in one-dimension. 2, Phys. Rev. A 5 (1972) 1372 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Moser, Three integrable Hamiltonian systems connnected with isospectral deformations, Adv. Math. 16 (1975) 197 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    M.A. Olshanetsky and A.M. Perelomov, Classical integrable finite dimensional systems related to Lie algebras, Phys. Rept. 71 (1981) 313 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M.A. Olshanetsky and A.M. Perelomov, Quantum integrable systems related to Lie algebras, Phys. Rept. 94 (1983) 313 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Onishchik and E. Vinberg, Lie groups and algebraic groups, Springer, Berlin-Heidelberg, Germany (1990).CrossRefMATHGoogle Scholar
  25. [25]
    G. Szegö, Orthogonal polynomials, American Mathematical Society colloquium publications volume 23, Americal Mathematical Society, U.S.A. (1939).Google Scholar
  26. [26]
    O. Aharony, N. Dorey and S.P. Kumar, New modular invariance in the N = 1 theory, operator mixings and supergravity singularities, JHEP 06 (2000) 026 [hep-th/0006008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    M. Knopp and G. Mason, Generalized modular forms, J. Numb. Theory 99 (2003) 1.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    P. Bantay and T. Gannon, Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Num. Theor. Phys. 1 (2007) 651 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    T. Gannon, The theory of vector-modular forms for the modular group, Contrib. Math. Comput. Sci. 8 (2014) 247 [arXiv:1310.4458] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    A. Ritz, Central charges, S-duality and massive vacua of N = 1 super Yang-Mills, Phys. Lett. B 641 (2006) 338 [hep-th/0606050] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    B. Berndt, E. Hecke and M. Knopp, Heckes theory of modular forms and Dirichlet series, World Scientific, Singapore (2008).MATHGoogle Scholar
  32. [32]
    F. Diamond and J. Shurman, A first course in modular forms, Graduate texts in mathematics 228, Springer, Germany (2005).Google Scholar
  33. [33]
    G. ’t Hooft, Topology of the gauge condition and new confinement phases in nonabelian gauge theories, Nucl. Phys. B 190 (1981) 455 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3D dualities from 4D dualities for orthogonal groups, JHEP 08 (2013) 099 [arXiv:1307.0511] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    C. Montonen and D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett. B 72 (1977) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Witten and D.I. Olive, Supersymmetry algebras that include topological charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Girardello, A. Giveon, M. Porrati and A. Zaffaroni, S duality in N = 4 Yang-Mills theories with general gauge groups, Nucl. Phys. B 448 (1995) 127 [hep-th/9502057] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    N. Dorey, C. Fraser, T.J. Hollowood and M.A.C. Kneipp, S duality in N = 4 supersymmetric gauge theories with arbitrary gauge group, Phys. Lett. B 383 (1996) 422 [hep-th/9605069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Kapustin, Wilson-t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    E. Witten, Supersymmetric index in four-dimensional gauge theories, Adv. Theor. Math. Phys. 5 (2002) 841 [hep-th/0006010] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    S.G. Naculich, H.J. Schnitzer and N. Wyllard, Vacuum states of N = 1 mass deformations of N = 4 and N = 2 conformal gauge theories and their brane interpretations, Nucl. Phys. B 609 (2001) 283 [hep-th/0103047] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    F. Cachazo, N. Seiberg and E. Witten, Phases of N = 1 supersymmetric gauge theories and matrices, JHEP 02 (2003) 042 [hep-th/0301006] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    N. Wyllard, A note on S-duality for the N = 1 Sp(2n) and SO(2n + 1) super-Yang-Mills theories, JHEP 06 (2007) 077 [hep-th/0703246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    E.R.C. Abraham and P.K. Townsend, Intersecting extended objects in supersymmetric field theories, Nucl. Phys. B 351 (1991) 313 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    G.R. Dvali and M.A. Shifman, Domain walls in strongly coupled theories, Phys. Lett. B 396 (1997) 64 [hep-th/9612128] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    F. Ferrari, Quantum parameter space and double scaling limits in N = 1 super Yang-Mills theory, Phys. Rev. D 67 (2003) 085013 [hep-th/0211069] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    A. Ritz, A Note on domain walls and the parameter space of N = 1 gauge theories, JHEP 10 (2003) 021 [hep-th/0308144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].
  51. [51]
    F. Cachazo, N. Seiberg and E. Witten, Chiral rings and phases of supersymmetric gauge theories, JHEP 04 (2003) 018 [hep-th/0303207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, Ecole Normale SupérieureParisFrance

Personalised recommendations