Looking for integrability on the worldsheet of confining strings

  • Patrick Cooper
  • Sergei Dubovsky
  • Victor Gorbenko
  • Ali Mohsen
  • Stefano Storace
Open Access
Regular Article - Theoretical Physics


We study restrictions on scattering amplitudes on the worldvolume of branes and strings (such as confining flux tubes in QCD) implied by the target space Poincaré symmetry. We focus on exploring the conditions for the string worldsheet theory to be integrable. We prove that for a higher dimensional membrane the scattering amplitudes for the translational Goldstone modes (“branons”) are double soft. At one-loop double softness is generically violated for the string worldsheet scattering as a consequence of collinear singularities. Violation of double softness implies in turn the breakdown of integrability. We prove that if branons are the only gapless degrees of freedom then the worldsheet integrability is compatible with target space Poincaré symmetry only if the number of space-time dimensions is equal to D = 26 (a critical bosonic string), and for D = 3. We extend the analysis to include massless worldsheet fermions, resulting from spontaneous breakdown of the target space supersymmetry. We check that the tree-level integrability in this case is in one-to-one correspondence with the existence of a Open image in new window -symmetric Green-Schwarz (GS) action. As a byproduct we show that at the leading order in the derivative expansion an \( \mathcal{N}=1 \) superstring without Open image in new window -symmetry in D = 3, 4, 6, 10 dimensions exhibits an accidental enhanced supersymmetry and is equivalent to a Open image in new window -symmetric \( \mathcal{N}=2 \) GS superstring.


Long strings Integrable Field Theories Superstrings and Heterotic Strings Bosonic Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Veneziano, Construction of a crossing-symmetric, Regge behaved amplitude for linearly rising trajectories, Nuovo Cim. A 57 (1968) 190 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Shifman and A. Vainshtein, Highly Excited Mesons, Linear Regge Trajectories and the Pattern of the Chiral Symmetry Realization, Phys. Rev. D 77 (2008) 034002 [arXiv:0710.0863] [INSPIRE].ADSGoogle Scholar
  3. [3]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CFT 4, arXiv:1405.4857 [INSPIRE].
  5. [5]
    S. Dubovsky, R. Flauger and V. Gorbenko, Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube, Phys. Rev. Lett. 111 (2013) 062006 [arXiv:1301.2325] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Dubovsky, R. Flauger and V. Gorbenko, Flux Tube Spectra from Approximate Integrability at Low Energies, J. Exp. Theor. Phys. 120 (2015) 399 [arXiv:1404.0037] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D=3 + 1 SU(N) gauge theories, JHEP 02 (2011) 030 [arXiv:1007.4720] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A. Athenodorou and M. Teper, Closed flux tubes in higher representations and their string description in D = 2 + 1 SU(N) gauge theories, JHEP 06 (2013) 053 [arXiv:1303.5946] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Dubovsky, R. Flauger and V. Gorbenko, Effective String Theory Revisited, JHEP 09 (2012) 044 [arXiv:1203.1054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M.B. Green and J.H. Schwarz, Covariant Description of Superstrings, Phys. Lett. B 136 (1984) 367 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    W. Siegel, Hidden Local Supersymmetry in the Supersymmetric Particle Action, Phys. Lett. B 128 (1983) 397 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Mezincescu, A.J. Routh and P.K. Townsend, All Superparticles are BPS, J. Phys. A 47 (2014) 175401 [arXiv:1401.5116] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  13. [13]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C.J. Isham, A. Salam and J.A. Strathdee, Nonlinear realizations of space-time symmetries. Scalar and tensor gravity, Annals Phys. 62 (1971) 98 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3.MathSciNetGoogle Scholar
  16. [16]
    E. Ivanov and V. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz. 25 (1975) 164.MathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Bando, T. Kugo and K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity S-matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    P. Dorey, Exact S matrices, hep-th/9810026 [INSPIRE].
  23. [23]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s Matrices in Two-Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys. 120 (1979) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L. Mezincescu and P.K. Townsend, Anyons from Strings, Phys. Rev. Lett. 105 (2010) 191601 [arXiv:1008.2334] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259.ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    S. Weinberg, Current-commutator theory of multiple pion production, Phys. Rev. Lett. 16 (1966) 879.ADSCrossRefGoogle Scholar
  28. [28]
    S.R. Coleman and H. Thun, On the Prosaic Origin of the Double Poles in the Sine-Gordon S Matrix, Commun. Math. Phys. 61 (1978) 31.ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J. Hughes and J. Polchinski, Partially Broken Global Supersymmetry and the Superstring, Nucl. Phys. B 278 (1986) 147 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Ivanov and S. Krivonos, N = 1 D = 4 supermembrane in the coset approach, Phys. Lett. B 453 (1999) 237 [hep-th/9901003] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [INSPIRE].ADSMATHGoogle Scholar
  32. [32]
    D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.M. Rabin, Supermanifold Cohomology and the Wess-Zumino Term of the Covariant Superstring Action, Commun. Math. Phys. 108 (1987) 375.ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M. Henneaux and L. Mezincescu, A σ-model Interpretation of Green-Schwarz Covariant Superstring Action, Phys. Lett. B 152 (1985) 340 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    L. Mezincescu, A.J. Routh and P.K. Townsend, Equivalence of 3D Spinning String and Superstring, JHEP 07 (2013) 024 [arXiv:1305.5049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A.R. Kavalov and A.G. Sedrakyan, Quantum geometry of the covariant superstring with N = 1 global supersymmetry, Phys. Lett. B 182 (1986) 33.ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    W. Siegel, Light Cone Analysis of Covariant Superstring, Nucl. Phys. B 236 (1984) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Mezincescu and P.K. Townsend, Quantum 3D Superstrings, Phys. Rev. D 84 (2011) 106006 [arXiv:1106.1374] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    L.U. Ancarani and G. Gasaneo, Derivatives of any order of the Gaussian hypergeometric function 2 F 1(a, b, c; z) with respect to the parameters a, b and c, J. Phys. A 42 (2009) 395208 [INSPIRE].MATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Patrick Cooper
    • 1
  • Sergei Dubovsky
    • 1
    • 2
  • Victor Gorbenko
    • 1
  • Ali Mohsen
    • 1
  • Stefano Storace
    • 1
  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkUnited States
  2. 2.Abdus Salam International Center for Theoretical PhysicsTriesteItaly

Personalised recommendations