Aspects of hot Galilean field theory

Open Access
Regular Article - Theoretical Physics

Abstract

We reconsider general aspects of Galilean-invariant thermal field theory. Using the proposal of our companion paper, we recast non-relativistic hydrodynamics in a manifestly covariant way and couple it to a background spacetime. We examine the concomitant consequences for the thermal partition functions of Galilean theories on a time-independent, but weakly curved background. We work out both the hydrodynamics and partition functions in detail for the example of parity-violating normal fluids in two dimensions to first order in the gradient expansion, finding results that differ from those previously reported in the literature. As for relativistic field theories, the equality-type constraints imposed by the existence of an entropy current appear to be in one-to-one correspondence with those arising from the existence of a hydrostatic partition function. Along the way, we obtain a number of useful results about non-relativistic hydrodynamics, including a manifestly boost-invariant presentation thereof, simplified Ward identities, the systematics of redefinitions of the fluid variables, and the positivity of entropy production.

Keywords

Space-Time Symmetries Global Symmetries AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    L.D. Landau and E.M. Lifshitz, Fluid mechanics, Pergamon Press, Oxford U.K. (1987).MATHGoogle Scholar
  4. [4]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147 [arXiv:1105.3733] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G.D. Moore and K.A. Sohrabi, Kubo formulae for second-order hydrodynamic coefficients, Phys. Rev. Lett. 106 (2011) 122302 [arXiv:1007.5333] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Luttinger, Theory of thermal transport coefficients, Phys. Rev. 135 (1964) A1505.ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann. Phys. 24 (1963) 419.ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, arXiv:1408.6855 [INSPIRE].
  12. [12]
    D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].ADSGoogle Scholar
  14. [14]
    D.T. Son, Newton-Cartan geometry and the quantum Hall effect, arXiv:1306.0638 [INSPIRE].
  15. [15]
    M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime symmetries of the quantum Hall effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary stress-energy tensor and Newton-Cartan geometry in Lifshitz holography, JHEP 01 (2014) 057 [arXiv:1311.6471] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan geometry and Lifshitz holography, Phys. Rev. D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].ADSMATHGoogle Scholar
  18. [18]
    C. Duval and H.P. Kunzle, Minimal gravitational coupling in the newtonian theory and the covariant Schrödinger equation, Gen. Rel. Grav. 16 (1984) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Duval, G. Burdet, H.P. Kunzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985) 1841 [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    O. Andreev, M. Haack and S. Hofmann, On nonrelativistic diffeomorphism invariance, Phys. Rev. D 89 (2014) 064012 [arXiv:1309.7231] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Banerjee, A. Mitra and P. Mukherjee, Localization of the galilean symmetry and dynamical realization of Newton-Cartan geometry, Class. Quant. Grav. 32 (2015) 045010 [arXiv:1407.3617] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    T. Brauner, S. Endlich, A. Monin and R. Penco, General coordinate invariance in quantum many-body systems, Phys. Rev. D 90 (2014) 105016 [arXiv:1407.7730] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Gromov and A.G. Abanov, Thermal Hall effect and geometry with torsion, Phys. Rev. Lett. 114 (2015) 016802 [arXiv:1407.2908] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    B. Bradlyn and N. Read, Low-energy effective theory in the bulk for transport in a topological phase, Phys. Rev. B 91 (2015) 125303 [arXiv:1407.2911] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schrödinger holography, arXiv:1409.1519 [INSPIRE].
  26. [26]
    J. Hartong, E. Kiritsis and N.A. Obers, Schrödinger invariance from Lifshitz isometries in holography and field theory, arXiv:1409.1522 [INSPIRE].
  27. [27]
    K. Jensen et al., Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    X.G. Wen and A. Zee, Shift and spin vector: new topological quantum numbers for the Hall fluids, Phys. Rev. Lett. 69 (1992) 953 [Erratum ibid. 69 (1992) 3000] [INSPIRE].
  29. [29]
    W. Goldberger and N. Read, unpublished.Google Scholar
  30. [30]
    J.E. Avron, R. Seiler and P.G. Zograf, Viscosity of quantum Hall fluids, Phys. Rev. Lett. 75 (1995) 697 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.E. Avron, Odd viscosity, physics/9712050.
  32. [32]
    M. Kaminski and S. Moroz, Nonrelativistic parity-violating hydrodynamics in two spatial dimensions, Phys. Rev. B 89 (2014) 115418 [arXiv:1310.8305] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Banerjee, S. Dutta, A. Jain and D. Roychowdhury, Entropy current for non-relativistic fluid, JHEP 08 (2014) 037 [arXiv:1405.5687] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Geracie and D.T. Son, Hydrodynamics on the lowest Landau level, arXiv:1408.6843 [INSPIRE].
  35. [35]
    S. Bhattacharyya, Entropy current and equilibrium partition function in fluid dynamics, JHEP 08 (2014) 165 [arXiv:1312.0220] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    R. Loganayagam, Anomaly Induced transport in arbitrary dimensions, arXiv:1106.0277 [INSPIRE].
  37. [37]
    H.P. Künzle, Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics, Ann. Inst. Henri Poincaré A 17 (1972) 337.MathSciNetGoogle Scholar
  38. [38]
    C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  39. [39]
    C. Hoyos and D.T. Son, Hall viscosity and electromagnetic response, Phys. Rev. Lett. 108 (2012) 066805 [arXiv:1109.2651] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T.S. Evans, N point finite temperature expectation values at real times, Nucl. Phys. B 374 (1992) 340 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Hoyos, B.S. Kim and Y. Oz, Lifshitz hydrodynamics, JHEP 11 (2013) 145 [arXiv:1304.7481] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    K. Jensen, Triangle anomalies, thermodynamics and hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].ADSGoogle Scholar
  43. [43]
    K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP 05 (2014) 134 [arXiv:1310.7024] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    Y. Neiman and Y. Oz, Relativistic hydrodynamics with general anomalous charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    S. Golkar and D.T. Son, (Non)-renormalization of the chiral vortical effect coefficient, JHEP 02 (2015) 169 [arXiv:1207.5806] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from thermal circles and anomalies, JHEP 05 (2014) 110 [arXiv:1311.2935] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on superfluid hydrodynamics from equilibrium partition functions, JHEP 01 (2013) 040 [arXiv:1206.6106] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    S. Bhattacharyya, Constraints on the second order transport coefficients of an uncharged fluid, JHEP 07 (2012) 104 [arXiv:1201.4654] [INSPIRE].ADSGoogle Scholar
  51. [51]
    R. Loganayagam, Entropy current in conformal hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M. Rangamani, S.F. Ross, D.T. Son and E.G. Thompson, Conformal non-relativistic hydrodynamics from gravity, JHEP 01 (2009) 075 [arXiv:0811.2049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsSUNY Stony BrookStony BrookUnited States

Personalised recommendations