Non-equilibrium scalar two point functions in AdS/CFT

  • Ville Keränen
  • Philipp Kleinert
Open Access
Regular Article - Theoretical Physics


In the first part of the paper, we discuss different versions of the AdS/CFT dictionary out of equilibrium. We show that the Skenderis-van Rees prescription and the “extrapolate” dictionary are equivalent at the level of “in-in” two point functions of free scalar fields in arbitrary asymptotically AdS spacetimes. In the second part of the paper, we calculate two point correlation functions in dynamical spacetimes using the “extrapolate” dictionary. These calculations are performed for conformally coupled scalar fields in examples of spacetimes undergoing gravitational collapse, the AdS2-Vaidya spacetime and the AdS3-Vaidya spacetime, which allow us to address the problem of thermalization following a quench in the boundary field theory. The computation of the correlators is formulated as an initial value problem in the bulk spacetime. Finally, we compare our results for AdS3-Vaidya to results in the previous literature obtained using the geodesic approximation and we find qualitative agreement.


Gauge-gravity correspondence AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].CrossRefMATHGoogle Scholar
  2. [2]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].
  6. [6]
    K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium condensation process in a holographic superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett. 110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Adams, P.M. Chesler and H. Liu, Holographic vortex liquids and superfluid turbulence, Science 341 (2013) 368 [arXiv:1212.0281] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J. Sonner, A. del Campo and W.H. Zurek, Universal far-from-equilibrium dynamics of a holographic superconductor, arXiv:1406.2329 [INSPIRE].
  10. [10]
    P.M. Chesler, A.M. Garcia-Garcia and H. Liu, Far-from-equilibrium coarsening, defect formation and holography, arXiv:1407.1862 [INSPIRE].
  11. [11]
    S.R. Das and T. Morita, Kibble-Zurek scaling in holographic quantum quench: backreaction, JHEP 01 (2015) 084 [arXiv:1409.7361] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Ewerz, T. Gasenzer, M. Karl and A. Samberg, Non-thermal fixed point in a holographic superfluid, arXiv:1410.3472 [INSPIRE].
  13. [13]
    A. Balatsky et al., Classical and quantum temperature fluctuations via holography, JHEP 01 (2015) 011 [arXiv:1405.4829] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Production of prompt photons: holographic duality and thermalization, Phys. Rev. D 86 (2012) 081901 [arXiv:1207.1116] [INSPIRE].ADSGoogle Scholar
  16. [16]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Cheneau et al., Light-cone-like spreading of correlations in a quantum many-body system, Nature 481 (2012) 484 [arXiv:1111.0776].ADSCrossRefGoogle Scholar
  18. [18]
    T. Langen, R. Geiger, M. Kuhnert, B. Rauer and J. Schmiedmayer, Local emergence of thermal correlations in an isolated quantum many-body system, Nature Phys. 9 (2013) 640 [arXiv:1305.3708].ADSCrossRefGoogle Scholar
  19. [19]
    R. Jackiw, Quantum meaning of classical field theory, Rev. Mod. Phys. 49 (1977) 681 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Marolf, States and boundary terms: subtleties of Lorentzian AdS/CFT, JHEP 05 (2005) 042 [hep-th/0412032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  26. [26]
    D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  27. [27]
    S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    B. Wu, On holographic thermalization and gravitational collapse of massless scalar fields, JHEP 10 (2012) 133 [arXiv:1208.1393] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Garfinkle, L.A. Pando Zayas and D. Reichmann, On field theory thermalization from gravitational collapse, JHEP 02 (2012) 119 [arXiv:1110.5823] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev. D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.B. Giddings, The boundary S matrix and the AdS to CFT dictionary, Phys. Rev. Lett. 83 (1999) 2707 [hep-th/9903048] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    V. Balasubramanian et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP 04 (2013) 069 [arXiv:1212.6066] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:1010.5443 [INSPIRE].
  39. [39]
    S. Caron-Huot, P.M. Chesler and D. Teaney, Fluctuation, dissipation and thermalization in non-equilibrium AdS 5 black hole geometries, Phys. Rev. D 84 (2011) 026012 [arXiv:1102.1073] [INSPIRE].ADSGoogle Scholar
  40. [40]
    H. Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, and financial markets, World Scientific, Singapore (2009).CrossRefMATHGoogle Scholar
  41. [41]
    R. Jackiw, Schrödinger picture analysis of boson and fermion quantum field theories, in Proceedings, Mathematical quantum field theory and related topics, Montreal Canada (1987) [INSPIRE].
  42. [42]
    S. Weinberg, The quantum theory of fields. Vol. 1: foundations, Cambridge Univ. Pr., Cambridge U.K. (1995) [INSPIRE].CrossRefMATHGoogle Scholar
  43. [43]
    E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].
  44. [44]
    D. Harlow, Jerusalem lectures on black holes and quantum information, arXiv:1409.1231 [INSPIRE].
  45. [45]
    D.A. Lowe and S. Roy, Holographic description of asymptotically AdS 2 collapse geometries, Phys. Rev. D 78 (2008) 124017 [arXiv:0810.1750] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Spradlin and A. Strominger, Vacuum states for AdS 2 black holes, JHEP 11 (1999) 021 [hep-th/9904143] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, arXiv:1402.6334 [INSPIRE].
  48. [48]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null geodesics, local CFT operators and AdS/CFT for subregions, Phys. Rev. D 88 (2013) 064057 [arXiv:1209.4641] [INSPIRE].ADSGoogle Scholar
  50. [50]
    N. Birrell and P. Davies, Quantum fields in curved space, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge U.K. (1982) [INSPIRE].
  51. [51]
    Y. Satoh and J. Troost, On time dependent AdS/CFT, JHEP 01 (2003) 027 [hep-th/0212089] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  53. [53]
    J.B. Hartle and S.W. Hawking, Path integral derivation of black hole radiance, Phys. Rev. D 13 (1976) 2188 [INSPIRE].ADSGoogle Scholar
  54. [54]
    J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    P.M. Chesler and D. Teaney, Dynamical Hawking radiation and holographic thermalization, arXiv:1112.6196 [INSPIRE].
  58. [58]
    P.M. Chesler and D. Teaney, Dilaton emission and absorption from far-from-equilibrium non-Abelian plasma, arXiv:1211.0343 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUnited Kingdom
  2. 2.Merton CollegeUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations