Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry

  • Seyed Ali Hosseini Mansoori
  • Behrouz Mirza
  • Mohamadreza Fazel
Open Access
Regular Article - Theoretical Physics

Abstract

As an extension to our earlier work [1], we employ the Nambu brackets to prove that the divergences of heat capacities correspond to their counterparts in thermodynamic geometry. We also obtain a simple representation for the conformal transformations that connect different thermodynamics metrics to each other. Using our bracket approach, we obtain interesting exact relations between the Hessian matrix with any number of parameters and specific heat capacities. Finally, we employ this approach to investigate some thermodynamic properties of the Meyers-Perry black holes with three spins.

Keywords

Black Holes Differential and Algebraic Geometry Statistical Methods 2D Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.A.H. Mansoori and B. Mirza, Correspondence of phase transition points and singularities of thermodynamic geometry of black holes, Eur. Phys. J. C 74 (2014) 2681 [arXiv:1308.1543] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971) 1344 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D 7 (1973) 949 [INSPIRE].ADSGoogle Scholar
  4. [4]
    S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    S.W. Hawking, Particle Creation By Black Holes, Commun. Math.Phys. 43 (1975) 199.ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J.M. Bardeen, B. Carter and S.W. Hawking, The Four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    G. Ruppeiner, Thermodynamics: A Riemannian geometric model, Phys. Rev. A 20 (1979) 1608.ADSCrossRefGoogle Scholar
  8. [8]
    G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67 (1995) 605 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63 (1975) 2479.ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    J.E. Aman, I. Bengtsson and N. Pidokrajt, Geometry of black hole thermodynamics, Gen. Rel. Grav. 35 (2003) 1733 [gr-qc/0304015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J.-y. Shen, R.-G. Cai, B. Wang and R.-K. Su, Thermodynamic geometry and critical behavior of black holes, Int. J. Mod. Phys. A 22 (2007) 11 [gr-qc/0512035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    B. Mirza and M. Zamani-Nasab, Ruppeiner Geometry of RN Black Holes: Flat or Curved?, JHEP 06 (2007) 059 [arXiv:0706.3450] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Medved, A commentary on Ruppeiner metrics for black holes, Mod. Phys. Lett. A 23 (2008) 2149.ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    G. Ruppeiner, Thermodynamic curvature: pure fluids to black holes, J. Phys. Conf. Ser. 410 (2013) 012138 [arXiv:1210.2011] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    M. Azreg-Ainou, Geometrothermodynamics: comments, criticisms and support, Eur. Phys. J. C 74 (2014) 2930 [arXiv:1311.6963] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Bellucci and B.N. Tiwari, Thermodynamic Geometry: Evolution, Correlation and Phase Transition, arXiv:1010.5148 [INSPIRE].
  18. [18]
    A. Bravetti and F. Nettel, Thermodynamic curvature and ensemble nonequivalence, Phys. Rev. D 90 (2014) 044064 [arXiv:1208.0399] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P. Salamon, J.D. Nulton and E. Ihring, On the relation between entropy and energy versions of thermodynamics length, J. Chem. Phys. 80 (1984) 436.ADSCrossRefGoogle Scholar
  20. [20]
    H. Liu, H. Lü, M. Luo and K.-N. Shao, Thermodynamical Metrics and Black Hole Phase Transitions, JHEP 12 (2010) 054 [arXiv:1008.4482] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  22. [22]
    T. Curtright and C.K. Zachos, Classical and quantum Nambu mechanics, Phys. Rev. D 68 (2003) 085001 [hep-th/0212267] [INSPIRE].ADSMATHGoogle Scholar
  23. [23]
    S.-W. Wei, Y.-X. Liu, Y.-Q. Wang and H. Guo, Thermodynamic Geometry of Black Hole in the Deformed Hořava-Lifshitz Gravity, Europhys. Lett. 99 (2012) 20004 [arXiv:1002.1550] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Binmore, Calculus Concepts and Methods, Cambridge University Press, Cambridge U.K. (2007) pg. 190.Google Scholar
  25. [25]
    J.E. Aman, I. Bengtsson and N. Pidokrajt, Geometry of black hole thermodynamics, Gen. Rel. Grav. 35 (2003) 1733 [gr-qc/0304015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J.E. Aman and N. Pidokrajt, Geometry of higher-dimensional black hole thermodynamics, Phys. Rev. D 73 (2006) 024017 [hep-th/0510139] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    R. Emparan and H.S. Reall, A Rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R. Emparan and H.S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].CrossRefMATHGoogle Scholar
  30. [30]
    D. Astefanesei, M.J. Rodriguez and S. Theisen, Thermodynamic instability of doubly spinning black objects, JHEP 08 (2010) 046 [arXiv:1003.2421] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    D. Astefanesei, R. B. Mann, M. J. Rodriguez, and C. Stelea, Quasilocal formalism and thermodynamics of asymptotically flat black objects, Class. Quant. Grav. 27 (2010) 165004 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    M.B.J. Poshteh, B. Mirza and Z. Sherkatghanad, Phase transition, critical behavior and critical exponents of Myers-Perry black holes, Phys. Rev. D 88 (2013) 024005 [arXiv:1306.4516] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Bravetti, D. Momeni, R. Myrzakulov and A. Altaibayeva, Geometrothermodynamics of Myers-Perry black holes, Adv. High Energy Phys. 2013 (2013) 549808 [arXiv:1303.2077] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    J.E. Aman and N. Pidokrajt, On Explicit Thermodynamic Functions and Extremal Limits of Myers-Perry Black Holes, Eur. Phys. J. C 73 (2013) 2601 [arXiv:1004.5550] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Seyed Ali Hosseini Mansoori
    • 1
  • Behrouz Mirza
    • 1
  • Mohamadreza Fazel
    • 2
  1. 1.Department of PhysicsIsfahan University of TechnologyIsfahanIran
  2. 2.Department of PhysicsUniversity of New MexicoAlbuquerqueUnited States

Personalised recommendations