Properties and searches of the exotic neutral Higgs bosons in the Georgi-Machacek model

  • Cheng-Wei Chiang
  • Koji Tsumura
Open Access
Regular Article - Theoretical Physics


The Georgi-Machacek model predicts the existence of four neutral Higgs bosons, one of which can be identified as the 125-GeV Higgs boson. The latest Higgs data favor the parameter space of small mixing angle α between the two custodial singlets of the model. The other two neutral Higgs bosons belong respectively to the custodial triplet and quintet. We study the general decay and production properties of these particles in the small-α scenario. Constraints on the SU(2) L triplet vacuum expectation value are obtained as a function of the exotic Higgs boson masses using latest ATLAS data of various search channels for additional neutral Higgs bosons.


Higgs Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Georgi and M. Machacek, Doubly Charged Higgs Bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.S. Chanowitz and M. Golden, Higgs Boson Triplets With M W = M Z cos θ W, Phys. Lett. B 165 (1985) 105 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.F. Gunion, R. Vega and J. Wudka, Naturalness problems for ρ = 1 and other large one loop effects for a standard model Higgs sector containing triplet fields, Phys. Rev. D 43 (1991) 2322 [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.F. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [INSPIRE].ADSGoogle Scholar
  5. [5]
    H.E. Haber and H.E. Logan, Radiative corrections to the Zb \( \overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Godfrey and K. Moats, Exploring Higgs Triplet Models via Vector Boson Scattering at the LHC, Phys. Rev. D 81 (2010) 075026 [arXiv:1003.3033] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C.-W. Chiang, T. Nomura and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, Phys. Rev. D 85 (2012) 095023 [arXiv:1202.2014] [INSPIRE].ADSGoogle Scholar
  8. [8]
    C.-W. Chiang and K. Yagyu, Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model, JHEP 01 (2013) 026 [arXiv:1211.2658] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Englert, E. Re and M. Spannowsky, Triplet Higgs boson collider phenomenology after the LHC, Phys. Rev. D 87 (2013) 095014 [arXiv:1302.6505] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Englert, E. Re and M. Spannowsky, Pinning down Higgs triplets at the LHC, Phys. Rev. D 88 (2013) 035024 [arXiv:1306.6228] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C.-W. Chiang, A.-L. Kuo and K. Yagyu, Enhancements of weak gauge boson scattering processes at the CERN LHC, JHEP 10 (2013) 072 [arXiv:1307.7526] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H.E. Logan, Hiding a Higgs width enhancement from off-shell gg (→ h *) → ZZ measurements, arXiv:1412.7577 [INSPIRE].
  13. [13]
    K. Hartling, K. Kumar and H.E. Logan, The decoupling limit in the Georgi-Machacek model, Phys. Rev. D 90 (2014) 015007 [arXiv:1404.2640] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C.-W. Chiang, S. Kanemura and K. Yagyu, Novel constraint on the parameter space of the Georgi-Machacek model with current LHC data, Phys. Rev. D 90 (2014) 115025 [arXiv:1407.5053] [INSPIRE].ADSGoogle Scholar
  15. [15]
    K. Hartling, K. Kumar and H.E. Logan, Indirect constraints on the Georgi-Machacek model and implications for Higgs boson couplings, Phys. Rev. D 91 (2015) 015013 [arXiv:1410.5538] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C.-W. Chiang and T. Yamada, Electroweak phase transition in Georgi-Machacek model, Phys. Lett. B 735 (2014) 295 [arXiv:1404.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H.E. Logan and M.-A. Roy, Higgs couplings in a model with triplets, Phys. Rev. D 82 (2010) 115011 [arXiv:1008.4869] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the Standard Model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Chang, C.A. Newby, N. Raj and C. Wanotayaroj, Revisiting Theories with Enhanced Higgs Couplings to Weak Gauge Bosons, Phys. Rev. D 86 (2012) 095015 [arXiv:1207.0493] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Hisano and K. Tsumura, Higgs boson mixes with an SU(2) septet representation, Phys. Rev. D 87 (2013) 053004 [arXiv:1301.6455] [INSPIRE].ADSGoogle Scholar
  21. [21]
    L. Cort, M. Garcia and M. Quirós, Supersymmetric Custodial Triplets, Phys. Rev. D 88 (2013) 075010 [arXiv:1308.4025] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Garcia-Pepin, S. Gori, M. Quirós, R. Vega, R. Vega-Morales and T.-T. Yu, Supersymmetric Custodial Higgs Triplets and the Breaking of Universality, Phys. Rev. D 91 (2015) 015016 [arXiv:1409.5737] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Chang, ALittlest Higgsmodel with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting nonminimal Higgs sectors, Phys. Rev. D 90 (2014) 075001 [arXiv:1406.3294] [INSPIRE].ADSGoogle Scholar
  26. [26]
    LHC Higgs Cross Section Working Group, S. Heinemeyer et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  27. [27]
    J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, The Higgs Hunters Guide, Addison-Wesley, Reading MA U.S.A. (1990) [Front. Phys. 80 (2000) 1] [INSPIRE].
  28. [28]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013) [ATLAS-COM-CONF-2013-018] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for a high-mass Higgs boson in the HWWlνlν decay channel with the ATLAS detector using 21 fb −1 of proton-proton collision data, ATLAS-CONF-2013-067 (2013) [ATLAS-COM-CONF-2013-082] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65-600 GeV with the ATLAS Detector in pp Collision Data at \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Center for Mathematics and Theoretical Physics and Department of PhysicsNational Central UniversityTaoyuanTaiwan
  2. 2.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  3. 3.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan
  4. 4.Kobayashi-Maskawa Institute for the Origin of Particles and the UniverseNagoya UniversityNagoyaJapan
  5. 5.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations