An Ising-Anderson model of localisation in high-temperature QCD

  • Matteo Giordano
  • Tamás G. Kovács
  • Ferenc Pittler
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss a possible mechanism leading to localisation of the low-lying Dirac eigenmodes in high-temperature lattice QCD, based on the spatial fluctuations of the local Polyakov lines in the partially ordered configurations above Tc. This mechanism provides a qualitative explanation of the dependence of localisation on the temperature and on the lattice spacing, and also of the phase diagram of QCD with an imaginary chemical potential. To test the viability of this mechanism we propose a three-dimensional effective, Anderson-like model, mimicking the effect of the Polyakov lines on the quarks. The diagonal, on-site disorder is governed by a three-dimensional Ising-like spin model with continuous spins. Our numerical results show that localised modes are indeed present in the ordered phase of the Ising model, thus supporting the proposed mechanism for localisation in QCD.

Keywords

Lattice QCD Phase Diagram of QCD Random Systems 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Banks and A. Casher, Chiral Symmetry Breaking in Confining Theories, Nucl. Phys. B 169 (1980) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.J.M. Verbaarschot and T. Wettig, Random matrix theory and chiral symmetry in QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [hep-ph/0003017] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. de Forcrand, Localization properties of fermions and bosons, AIP Conf. Proc. 892 (2007) 29 [hep-lat/0611034] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.G. Kovács and F. Pittler, Poisson to Random Matrix Transition in the QCD Dirac Spectrum, Phys. Rev. D 86 (2012) 114515 [arXiv:1208.3475] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Giordano, T.G. Kovács and F. Pittler, Quark localization in QCD above T c, PoS(LATTICE 2013)212 [arXiv:1311.1770] [INSPIRE].
  6. [6]
    A.M. García-García and J.C. Osborn, Chiral phase transition and anderson localization in the instanton liquid model for QCD, Nucl. Phys. A 770 (2006) 141 [hep-lat/0512025] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.M. García-García and J.C. Osborn, Chiral phase transition in lattice QCD as a metal-insulator transition, Phys. Rev. D 75 (2007) 034503 [hep-lat/0611019] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T.G. Kovács, Absence of correlations in the QCD Dirac spectrum at high temperature, Phys. Rev. Lett. 104 (2010) 031601 [arXiv:0906.5373] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T.G. Kovács and F. Pittler, Anderson Localization in quark-gluon Plasma, Phys. Rev. Lett. 105 (2010)192001 [arXiv:1006.1205] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabó, The Equation of state in lattice QCD: With physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    JLQCD collaboration, G. Cossu et al., Axial U(1) symmetry at finite temperature with Möbius domain-wall fermions, arXiv:1412.5703 [INSPIRE].
  13. [13]
    M. Giordano, S.D. Katz, T.G. Kovács and F. Pittler, The chiral transition as an Anderson transition, arXiv:1410.8392 [INSPIRE].
  14. [14]
    P. de Forcrand and O. Philipsen, The Chiral critical point of N f = 3 QCD at finite density to the order (μ/T )4, JHEP 11 (2008) 012 [arXiv:0808.1096] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    M. Giordano, T.G. Kovács and F. Pittler, Universality and the QCD Anderson Transition, Phys. Rev. Lett. 112 (2014) 102002 [arXiv:1312.1179] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109 (1958) 1492 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P.A. Lee and T.V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57 (1985) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Evers and A.D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80 (2008) 1355 [arXiv:0707.4378].ADSCrossRefGoogle Scholar
  19. [19]
    M. Mehta, Random Matrices, Academic Press, San Diego (1991).MATHGoogle Scholar
  20. [20]
    K. Slevin and T. Ohtsuki, The Anderson transition: time reversal symmetry and universality, Phys. Rev. Lett. 78 (1997) 4083 [cond-mat/9704192].ADSCrossRefGoogle Scholar
  21. [21]
    E.N. Economou and P.D. Antoniou, Localization and off-diagonal disorder, Solid State Comm. 21 (1977) 285.ADSCrossRefGoogle Scholar
  22. [22]
    D. Weaire and V. Srivastava, Numerical results for Anderson localisation in the presence of off-diagonal disorder, Solid State Comm. 23 (1977) 863.ADSCrossRefGoogle Scholar
  23. [23]
    F. Bruckmann, T.G. Kovács and S. Schierenberg, Anderson localization through Polyakov loops: lattice evidence and Random matrix model, Phys. Rev. D 84 (2011) 034505 [arXiv:1105.5336] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Roberge and N. Weiss, Gauge Theories With Imaginary Chemical Potential and the Phases of QCD, Nucl. Phys. B 275 (1986) 734 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A.M. García-García and E. Cuevas, Anderson transition in systems with chiral symmetry, Phys. Rev. B 74 (2006) 113101 [cond-mat/0602331].ADSCrossRefGoogle Scholar
  28. [28]
    L.G. Yaffe and B. Svetitsky, First Order Phase Transition in the SU(3) Gauge Theory at Finite Temperature, Phys. Rev. D 26 (1982) 963 [INSPIRE].ADSGoogle Scholar
  29. [29]
    T.A. DeGrand and C.E. DeTar, Phase Structure of QCD at High Temperature With Massive Quarks and Finite Quark Density: A Z(3) Paradigm, Nucl. Phys. B 225 (1983) 590 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Slevin and T. Ohtsuki, Corrections to scaling at the Anderson transition, Phys. Rev. Lett. 82 (1999) 382 [cond-mat/9812065].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Matteo Giordano
    • 1
  • Tamás G. Kovács
    • 1
  • Ferenc Pittler
    • 2
  1. 1.Institute for Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary
  2. 2.MTA-ELTE Lattice Gauge Theory Research GroupBudapestHungary

Personalised recommendations