The Euler current and relativistic parity odd transport

Open Access
Regular Article - Theoretical Physics

Abstract

For a spacetime of odd dimensions endowed with a unit vector field, we introduce a new topological current that is identically conserved and whose charge is equal to the Euler character of the even dimensional spacelike foliations. The existence of this current allows us to introduce new Chern-Simons-type terms in the effective field theories describing relativistic quantum Hall states and (2 + 1) dimensional superfluids. Using effective field theory, we calculate various correlation functions and identify transport coefficients. In the quantum Hall case, this current provides the natural relativistic generalization of the Wen-Zee term, required to characterize the shift and Hall viscosity in quantum Hall systems. For the superfluid case this term is required to have nonzero Hall viscosity and to describe superfluids with non s-wave pairing.

Keywords

Effective field theories Topological States of Matter Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    X.G. Wen and A. Zee, A Classification of Abelian quantum Hall states and matrix formulation of topological fluids, Phys. Rev. B 46 (1992) 2290 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    X.G. Wen and A. Zee, Shift and spin vector: New topological quantum numbers for the Hall fluids, Phys. Rev. Lett. 69 (1992) 953 [Erratum ibid. 69 (1992) 3000] [INSPIRE].
  4. [4]
    D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    C. Hoyos and D.T. Son, Hall Viscosity and Electromagnetic Response, Phys. Rev. Lett. 108 (2012) 066805 [arXiv:1109.2651] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638 [INSPIRE].
  7. [7]
    A. Gromov and A.G. Abanov, Density-curvature response and gravitational anomaly, Phys. Rev. Lett. 113 (2014) 266802 [arXiv:1403.5809] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197 [cond-mat/0509330] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Zhang, Y.-W. Tan, H.L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and and Berrys phase in graphene, Nature 438 (2005) 201 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    X. Du, I. Skachko, F. Duerr, A. Luican and E.Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462 (2009) 192 [arXiv:0910.2532].ADSCrossRefGoogle Scholar
  11. [11]
    K.I. Bolotin, F. Ghahari, M.D. Shulman, H.L. Stormer and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462 (2009) 196 [arXiv:0910.2763].ADSCrossRefGoogle Scholar
  12. [12]
    J. Gonzalez, F. Guinea and M.A.H. Vozmediano, Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A Renormalization group approach), Nucl. Phys. B 424 (1994) 595 [hep-th/9311105] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D.T. Son, Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction, Phys. Rev. B 75 (2007) 235423 [cond-mat/0701501] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Golkar, M.M. Roberts and D.T. Son, Effective Field Theory of Relativistic Quantum Hall Systems, JHEP 12 (2014) 138 [arXiv:1403.4279] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].
  16. [16]
    L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino Terms for Relativistic Fluids, Superfluids, Solids and Supersolids, Phys. Rev. Lett. 114 (2015) 091601 [arXiv:1403.6509] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Hoyos, S. Moroz and D.T. Son, Effective theory of chiral two-dimensional superfluids, Phys. Rev. B 89 (2014) 174507 [arXiv:1305.3925] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.G. Abanov and P.B. Wiegmann, Theta-terms in nonlinear sigma-models, Nucl. Phys. B 570 (2000) 685 [hep-th/9911025] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    R. Bott and L.W. Tu, Differential forms in algebraic topology, Springer-Verlag, New York U.S.A. (1982).CrossRefMATHGoogle Scholar
  20. [20]
    D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    M. Greiter, Landau level quantization on the sphere, Phys. Rev. B 83 (2011) 115129 [arXiv:1101.3943].ADSCrossRefGoogle Scholar
  22. [22]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].
  23. [23]
    G.W. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360 (1991) 362 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    W. Kohn, Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123 (1961) 1242 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    N. Read and E.H. Rezayi, Hall viscosity, orbital spin and geometry: paired superfluids and quantum Hall systems, Phys. Rev. B 84 (2011) 085316 [arXiv:1008.0210] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Read, Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p x + ip y paired superfluids, Phys. Rev. B 79 (2009) 045308 [arXiv:0805.2507] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.E. Avron, R. Seiler and P.G. Zograf, Viscosity of quantum Hall fluids, Phys. Rev. Lett. 75 (1995) 697 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.E. Avron, Odd Viscosity, J. Stat. Phys. 92 (1998) 543 [physics/9712050]MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Kovner, B. Rosenstein and D. Eliezer, Photon as a Goldstone boson in (2 + 1)-dimensional Abelian gauge theories, Nucl. Phys. B 350 (1991) 325 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N. Read and D. Green, Paired states of fermions in two-dimensions with breaking of parity and time reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61 (2000) 10267 [cond-mat/9906453] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Siavash Golkar
    • 1
  • Matthew M. Roberts
    • 1
  • Dam T. Son
    • 1
  1. 1.Kadanoff Center for Theoretical Physics and Enrico Fermi InstituteUniversity of ChicagoChicagoUnited States

Personalised recommendations