Reducing differential equations for multiloop master integrals

Open Access
Regular Article - Theoretical Physics


We present an algorithm of the reduction of the differential equations for master integrals the Fuchsian form with the right-hand side matrix linearly depending on dimensional regularization parameter ϵ. We consider linear transformations of the functions column which are rational in the variable and in ϵ. Apart from some degenerate cases described below, the algorithm allows one to obtain the required transformation or to ascertain irreducibility to the form required. Degenerate cases are quite anticipated and likely to correspond to irreducible systems.


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.V. Kotikov, Differential equations method: The Calculation of vertex type Feynman diagrams, Phys. Lett. B 259 (1991) 314 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  5. [5]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  9. [9]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013)251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    J.M. Henn and V.A. Smirnov, Analytic results for two-loop master integrals for Bhabha scattering I, JHEP 11 (2013) 041 [arXiv:1307.4083] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Di Vita, P. Mastrolia, U. Schubert and V. Yundin, Three-loop master integrals for ladder-box diagrams with one massive leg, JHEP 09 (2014) 148 [arXiv:1408.3107] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Höschele, J. Hoff and T. Ueda, Adequate bases of phase space master integrals for ggh at NNLO and beyond, JHEP 09 (2014) 116 [arXiv:1407.4049] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N 3 LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution, Phys. Rev. D 90 (2014) 053006 [arXiv:1404.5839] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The two-loop soft function for heavy quark pair production at future linear colliders, arXiv:1408.5134 [INSPIRE].
  20. [20]
    G. Bell and T. Huber, Master integrals for the two-loop penguin contribution in non-leptonic B-decays, JHEP 12 (2014) 129 [arXiv:1410.2804] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Argeri et al., Magnus and Dyson Series for Master Integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    H. Röhrl, Holomorphic fiber bundles over riemann surfaces, Bull. Am. Math. Soc. 68 (1962) 125.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    H. Röhrl, Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichungen, Math. Ann. 133 (1957) 1 [arXiv:1109.1403] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    M.A. Barkatou and E. Pflügel, On the Moser-and super-reduction algorithms of systems of linear differential equations and their complexity, J. Symbolic Comput. 44 (2009) 1017.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M.A. Barkatou and E. Pflügel, Computing super-irreducible forms of systems of linear differential equations via Moser-reduction: a new approach, in proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, Waterloo, Ontario, Canada, July 29 - August 1 2007, ACM, New York U.S.A. (2007), pp. 1-8.Google Scholar
  26. [26]
    J. Moser, The order of a singularity in Fuchstheory, Math. Z. 72 (1960) 379.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    A.A. Bolibrukh, The Riemann-Hilbert problem on the complex projective line, Mat. Zametki 46 (1989) 118.MathSciNetMATHGoogle Scholar
  28. [28]
    V. Zakharov, S. Manakov, S. Novikov and L. Pitaevsky, Soliton theory, in The inverse problem method, Nauka, Moscow Russia (1980).Google Scholar
  29. [29]
    I. Gohberg, P. Lancaster and L. Rodman, Invariant subspaces of matrices with applications, Classics in Applied Mathematics (Book 51), SIAM (1986).Google Scholar
  30. [30]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  32. [32]
    S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via higher normal functions, arXiv:1406.2664 [INSPIRE].
  33. [33]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Budker Institute of Nuclear PhysicsNovosibirskRussia

Personalised recommendations