Advertisement

Extensive numerical study of a D-brane, anti-D-brane system in AdS5/CFT4

  • Árpád Hegedűs
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper the hybrid-NLIE approach of [38] is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L = 1 case is also commented in the paper.

Keywords

D-branes AdS-CFT Correspondence Boundary Quantum Field Theory Bethe Ansatz 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    Z. Bajnok et al., The spectrum of tachyons in AdS/CFT, JHEP 03 (2014) 055 [arXiv:1312.3900] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    O. DeWolfe and N. Mann, Integrable open spin chains in defect conformal field theory, JHEP 04 (2004) 035 [hep-th/0401041] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons, JHEP 06 (2005) 059 [hep-th/0501078] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP 11 (2007) 063 [arXiv:0708.2272] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    D.H. Correa and C.A.S. Young, Reflecting magnons from D7 and D5 branes, J. Phys. A 41 (2008) 455401 [arXiv:0808.0452] [INSPIRE].ADSMATHGoogle Scholar
  10. [10]
    D.H. Correa, V. Regelskis and C.A.S. Young, Integrable achiral D5-brane reflections and asymptotic Bethe equations, J. Phys. A 44 (2011) 325403 [arXiv:1105.3707] [INSPIRE].MATHGoogle Scholar
  11. [11]
    Z. Bajnok and R.A. Janik, Six and seven loop Konishi from Lüscher corrections, JHEP 11 (2012) 002 [arXiv:1209.0791] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Leurent, D. Serban and D. Volin, Six-loop Konishi anomalous dimension from the Y-system, Phys. Rev. Lett. 109 (2012) 241601 [arXiv:1209.0749] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Leurent and D. Volin, Multiple zeta functions and double wrapping in planar N = 4 SYM, Nucl. Phys. B 875 (2013) 757 [arXiv:1302.1135] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    C. Marboe and D. Volin, Quantum spectral curve as a tool for a perturbative quantum field theory, arXiv:1411.4758 [INSPIRE].
  15. [15]
    C. Marboe, V. Velizhanin and D. Volin, Six-loop anomalous dimension of twist-two operators in planar N = 4 SYM theory, arXiv:1412.4762 [INSPIRE].
  16. [16]
    N. Gromov, Y-system and Quasi-Classical Strings, JHEP 01 (2010) 112 [arXiv:0910.3608] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    N. Gromov, V. Kazakov and Z. Tsuboi, PSU(2, 2|4) Character of Quasiclassical AdS/CFT, JHEP 07 (2010) 097 [arXiv:1002.3981] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    Z. Bajnok, M. Kim and L. Palla, Spectral curve for open strings attached to the Y=0 brane, JHEP 04 (2014) 035 [arXiv:1311.7280] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Gromov, F. Levkovich-Maslyuk, G. Sizov and S. Valatka, Quantum spectral curve at work: from small spin to strong coupling in \( \mathcal{N}=4 \) SYM, JHEP 07 (2014) 156 [arXiv:1402.0871] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Planar \( \mathcal{N}=4 \) Supersymmetric Yang-Mills Theory: Konishi Dimension at Any Coupling, Phys. Rev. Lett. 104 (2010) 211601 [arXiv:0906.4240] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Frolov, Konishi operator at intermediate coupling, J. Phys. A 44 (2011) 065401 [arXiv:1006.5032] [INSPIRE].ADSMATHGoogle Scholar
  22. [22]
    S. Frolov, Scaling dimensions from the mirror TBA, J. Phys. A 45 (2012) 305402 [arXiv:1201.2317] [INSPIRE].MATHGoogle Scholar
  23. [23]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from \( \mathcal{N}=4 \) super Yang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    A. LeClair, G. Mussardo, H. Saleur and S. Skorik, Boundary energy and boundary states in integrable quantum field theories, Nucl. Phys. B 453 (1995) 581 [hep-th/9503227] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    D.H. Correa and C.A.S. Young, Finite size corrections for open strings/open chains in planar AdS/CFT, JHEP 08 (2009) 097 [arXiv:0905.1700] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Palla, Yangian symmetry of boundary scattering in AdS/CFT and the explicit form of bound state reflection matrices, JHEP 03 (2011) 110 [arXiv:1102.0122] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    C. Ahn and R.I. Nepomechie, Yangian symmetry and bound states in AdS/CFT boundary scattering, JHEP 05 (2010) 016 [arXiv:1003.3361] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Z. Bajnok et al., Reformulating the TBA equations for the quark anti-quark potential and their two loop expansion, JHEP 03 (2014) 056 [arXiv:1312.4258] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar AdS/CFT: A Proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].ADSMATHGoogle Scholar
  35. [35]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS 5 × S 5 Mirror Model, JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Cavaglia, D. Fioravanti and R. Tateo, Extended Y-system for the AdS 5 /CFT 4 correspondence, Nucl. Phys. B 843 (2011) 302 [arXiv:1005.3016] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    J. Balog and Á. Hegedűs, AdS 5 × S 5 mirror TBA equations from Y-system and discontinuity relations, JHEP 08 (2011) 095 [arXiv:1104.4054] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    J. Balog and Á. Hegedűs, Hybrid-NLIE for the AdS/CFT spectral problem, JHEP 08 (2012) 022 [arXiv:1202.3244] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Z. Bajnok and L. Palla, Boundary finite size corrections for multiparticle states and planar AdS/CFT, JHEP 01 (2011) 011 [arXiv:1010.5617] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    G. Arutyunov and S. Frolov, String hypothesis for the AdS 5 × S 5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Arutyunov, S. Frolov and R. Suzuki, Exploring the mirror TBA, JHEP 05 (2010) 031 [arXiv:0911.2224] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    J. Balog and Á. Hegedűs, Quasi-local formulation of the mirror TBA, JHEP 05 (2012) 039 [arXiv:1106.2100] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    R. Suzuki, Hybrid NLIE for the Mirror AdS 5 × S 5, J. Phys. A 44 (2011) 235401 [arXiv:1101.5165] [INSPIRE].ADSMATHGoogle Scholar
  44. [44]
    C. Destri and H.J. de Vega, Nonlinear integral equation and excited states scaling functions in the sine-Gordon model, Nucl. Phys. B 504 (1997) 621 [hep-th/9701107] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  45. [45]
    Á. Hegedűs, Finite size effects and 2-string deviations in the spin-1 XXZ chains, J. Phys. A 40 (2007) 12007 [arXiv:0706.1411] [INSPIRE].ADSMATHGoogle Scholar
  46. [46]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Solving the AdS/CFT Y-system, JHEP 07 (2012) 023 [arXiv:1110.0562] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \( \mathcal{N} \) = super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CFT 4, arXiv:1405.4857 [INSPIRE].
  49. [49]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 Superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].ADSMATHGoogle Scholar
  50. [50]
    G. Arutyunov and S. Frolov, The dressing factor and crossing equations, J. Phys. A 42 (2009) 425401 [arXiv:0904.4575] [INSPIRE].ADSMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.MTA Lendület Holographic QFT GroupWigner Research CentreBudapest 114Hungary

Personalised recommendations