Advertisement

Constraints on galactic wino densities from gamma ray lines

  • Matthew Baumgart
  • Ira Z. Rothstein
  • Varun Vaidya
Open Access
Regular Article - Theoretical Physics

Abstract

We systematically compute the annihilation rate for neutral winos into the final state γ + X, including all leading radiative corrections. This includes both the Sommerfeld enhancement (in the decoupling limit for the Higgsino) and the resummation of the leading electroweak double logarithms. Adopting an analysis of the HESS experiment, we place constraints on the mass as a function of the wino fraction of the dark matter and the shape of the dark matter profile. We also determine how much coring is needed in the dark matter halo to make the wino a viable candidate as a function of its mass. Additionally, as part of our effective field theory formalism, we show that in the pure-Standard Model sector of our theory, emissions of soft Higgses are power-suppressed and that collinear Higgs emission does not contribute to leading double logs.

Keywords

Supersymmetry Phenomenology NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Dimopoulos, LHC, SSC and the universe, Phys. Lett. B 246 (1990) 347 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].
  6. [6]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Fan and M. Reece, In wino veritas? Indirect searches shed light on neutralino dark matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett. 100 (2008) 021802 [arXiv:0709.2377] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Hryczuk and R. Iengo, The one-loop and Sommerfeld electroweak corrections to the wino dark matter annihilation, JHEP 01 (2012) 163 [Erratum ibid. 06 (2012) 137] [arXiv:1111.2916] [INSPIRE].
  18. [18]
    M. Baumgart, I.Z. Rothstein and V. Vaidya, On the annihilation rate of WIMPs, arXiv:1409.4415 [INSPIRE].
  19. [19]
    HESS collaboration, A. Abramowski et al., Search for photon-linelike signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    W.E. Caswell and G.P. Lepage, Effective Lagrangians for bound state problems in QED, QCD and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Fleming, A.K. Leibovich and T. Mehen, Resummation of large endpoint corrections to color-octet J/ψ photoproduction, Phys. Rev. D 74 (2006) 114004 [hep-ph/0607121] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M.E. Luke and A.V. Manohar, Bound states and power counting in effective field theories, Phys. Rev. D 55 (1997) 4129 [hep-ph/9610534] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C.R. Galley and M. Tiglio, Radiation reaction and gravitational waves in the effective field theory approach, Phys. Rev. D 79 (2009) 124027 [arXiv:0903.1122] [INSPIRE].ADSGoogle Scholar
  30. [30]
    I. Rothstein, I. Stewart and P. Shrivastava, to appear.Google Scholar
  31. [31]
    S. Weinberg, The quantum theory of fields. Vol. 1: foundations, chapter 13, Cambridge Univ. Pr., Cambridge U.K. (1995).Google Scholar
  32. [32]
    I.Z. Rothstein, TASI lectures on effective field theories, hep-ph/0308266 [INSPIRE].
  33. [33]
    M. Bauer, T. Cohen, R.J. Hill and M.P. Solon, Soft collinear effective theory for heavy WIMP annihilation, JHEP 01 (2015) 099 [arXiv:1409.7392] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Ovanesyan, T.R. Slatyer and I.W. Stewart, Heavy dark matter annihilation from effective field theory, arXiv:1409.8294 [INSPIRE].
  35. [35]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].ADSGoogle Scholar
  38. [38]
    R. Iengo, Sommerfeld enhancement: general results from field theory diagrams, JHEP 05 (2009) 024 [arXiv:0902.0688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, arXiv:1411.6924 [INSPIRE].
  43. [43]
    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, arXiv:1411.6924 [INSPIRE].
  44. [44]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Catena and P. Ullio, A novel determination of the local dark matter density, JCAP 08 (2010) 004 [arXiv:0907.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P. Salucci, F. Nesti, G. Gentile and C.F. Martins, The dark matter density at the suns location, Astron. Astrophys. 523 (2010) A83 [arXiv:1003.3101] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Iocco, M. Pato, G. Bertone and P. Jetzer, Dark matter distribution in the Milky Way: microlensing and dynamical constraints, JCAP 11 (2011) 029 [arXiv:1107.5810] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Bernal, J.E. Forero-Romero, R. Garani and S. Palomares-Ruiz, Systematic uncertainties from halo asphericity in dark matter searches, JCAP 09 (2014) 004 [arXiv:1405.6240] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Nesti and P. Salucci, The dark matter halo of the Milky Way, AD 2013, JCAP 07 (2013) 016 [arXiv:1304.5127] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    L. Pieri, J. Lavalle, G. Bertone and E. Branchini, Implications of high-resolution simulations on indirect dark matter searches, Phys. Rev. D 83 (2011) 023518 [arXiv:0908.0195] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Di Cintio et al., The dependence of dark matter profiles on the stellar to halo mass ratio: a prediction for cusps vs cores, Mon. Not. Roy. Astron. Soc. 437 (2014) 415 [arXiv:1306.0898] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Kuhlen, J. Guedes, A. Pillepich, P. Madau and L. Mayer, An off-center density peak in the Milky Ways dark matter halo?, Astrophys. J. 765 (2013) 10 [arXiv:1208.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    F. Marinacci, R. Pakmor and V. Springel, The formation of disc galaxies in high resolution moving-mesh cosmological simulations, Mon. Not. Roy. Astron. Soc. 437 (2014) 1750 [arXiv:1305.5360] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Burkert, The structure of dark matter halos in dwarf galaxies, IAU Symp. 171 (1996) 175 [astro-ph/9504041] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P. Salucci and A. Burkert, Dark matter scaling relations, Astrophys. J. 537 (2000) L9 [astro-ph/0004397] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    CTA collaboration, M. Doro et al., Dark matter and fundamental physics with the Cherenkov Telescope Array, Astropart. Phys. 43 (2013) 189 [arXiv:1208.5356] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Matthew Baumgart
    • 1
  • Ira Z. Rothstein
    • 1
  • Varun Vaidya
    • 1
  1. 1.Department of PhysicsCarnegie Mellon UniversityPittsburghUnited States

Personalised recommendations