Jet substructure and probes of CP violation in Vh production

  • R. M. Godbole
  • D. J. Miller
  • K. A. Mohan
  • C. D. White
Open Access
Regular Article - Experimental Physics


We analyse the hVV (V = W, Z) vertex in a model independent way using Vh production. To that end, we consider possible corrections to the Standard Model Higgs Lagrangian, in the form of higher dimensional operators which parametrise the effects of new physics. In our analysis, we pay special attention to linear observables that can be used to probe CP violation in the same. By considering the associated production of a Higgs boson with a vector boson (W or Z), we use jet substructure methods to define angular observables which are sensitive to new physics effects, including an asymmetry which is linearly sensitive to the presence of CP odd effects. We demonstrate how to use these observables to place bounds on the presence of higher dimensional operators, and quantify these statements using a log likelihood analysis. Our approach allows one to probe separately the hZZ and hWW vertices, involving arbitrary combinations of BSM operators, at the Large Hadron Collider.


Beyond Standard Model Higgs physics CP violation Jet substructure Hadron-Hadron Scattering 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass ∼ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  10. [10]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Azatov, R. Contino and J. Galloway, Contextualizing the Higgs at the LHC, arXiv:1206.3171 [INSPIRE].
  13. [13]
    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Ellis and D.S. Hwang, Does theHiggshave Spin Zero?, JHEP 09 (2012) 071 [arXiv:1202.6660] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Odagiri, On azimuthal spin correlations in Higgs plus jet events at LHC, JHEP 03 (2003) 009 [hep-ph/0212215] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in HZZl(1) + l(1) − l(2) + l(2)− at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay HWW/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner and S.D. Rindani, Determining the CP properties of the Higgs boson, Phys. Rev. Lett. 100 (2008) 051801 [arXiv:0707.2878] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    U. De Sanctis, M. Fabbrichesi and A. Tonero, Telling the spin of theHiggs bosonat the LHC, Phys. Rev. D 84 (2011) 015013 [arXiv:1103.1973] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Ellis, V. Sanz and T. You, Prima Facie Evidence against Spin-Two Higgs Impostors, Phys. Lett. B 726 (2013) 244 [arXiv:1211.3068] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].
  24. [24]
    D. Stolarski and R. Vega-Morales, Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Ellis, D.S. Hwang, V. Sanz and T. You, A Fast Track towards theHiggsSpin and Parity, JHEP 11 (2012) 134 [arXiv:1208.6002] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Djouadi, R.M. Godbole, B. Mellado and K. Mohan, Probing the spin-parity of the Higgs boson via jet kinematics in vector boson fusion, Phys. Lett. B 723 (2013) 307 [arXiv:1301.4965] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Godbole, D.J. Miller, K. Mohan and C.D. White, Boosting Higgs CP properties via VH Production at the Large Hadron Collider, Phys. Lett. B 730 (2014) 275 [arXiv:1306.2573] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Ellis, V. Sanz and T. You, Associated Production Evidence against Higgs Impostors and Anomalous Couplings, Eur. Phys. J. C 73 (2013) 2507 [arXiv:1303.0208] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R.M. Godbole, C. Hangst, M. Muhlleitner, S.D. Rindani and P. Sharma, Model-independent analysis of Higgs spin and CP properties in the process \( {e}^{+}{e}^{-}\to t\overline{t}\Phi \), Eur. Phys. J. C 71 (2011) 1681 [arXiv:1103.5404] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Muhlleitner, R. Godbole, C. Hangst, S. Rindani and P. Sharma, Analysis of Higgs spin and CP properties in a model-independent way in \( {e}^{+}{e}^{-}\to t\overline{t}\Phi \), Frascati Phys. Ser. 54 (2012) 188 [INSPIRE]..Google Scholar
  31. [31]
    E. Boos, V. Bunichev, M. Dubinin and Y. Kurihara, Higgs boson signal at complete tree level in the SM extension by dimension-six operators, Phys. Rev. D 89 (2014) 035001 [arXiv:1309.5410] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Y. Sun, X.-F. Wang and D.-N. Gao, CP mixed property of the Higgs-like particle in the decay channel hZZ * → 4l, Int. J. Mod. Phys. A 29 (2014) 1450086 [arXiv:1309.4171] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M.B. Einhorn and J. Wudka, Higgs-Boson Couplings Beyond the Standard Model, Nucl. Phys. B 877 (2013) 792 [arXiv:1308.2255] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].ADSGoogle Scholar
  35. [35]
    E. Massó and V. Sanz, Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D.T. Nhung, M. Muhlleitner, J. Streicher and K. Walz, Higher Order Corrections to the Trilinear Higgs Self-Couplings in the Real NMSSM, JHEP 11 (2013) 181 [arXiv:1306.3926] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  38. [38]
    C. Delaunay, G. Perez, H. de Sandes and W. Skiba, Higgs Up-Down CP Asymmetry at the LHC, Phys. Rev. D 89 (2014) 035004 [arXiv:1308.4930] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Delaunay, T. Golling, G. Perez and Y. Soreq, Enhanced Higgs boson coupling to charm pairs, Phys. Rev. D 89 (2014) 033014 [arXiv:1310.7029] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. Maltoni, K. Mawatari and M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects, Eur. Phys. J. C 74 (2014) 2710 [arXiv:1311.1829] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H. Belusca-Maito, Effective Higgs Lagrangian and Constraints on Higgs Couplings, arXiv:1404.5343 [INSPIRE].
  42. [42]
    M.B. Gavela et al., CP violation with a dynamical Higgs, JHEP 1410 (2014) 44 [arXiv:1406.6367] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].ADSGoogle Scholar
  44. [44]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: The role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    N. Desai, D.K. Ghosh and B. Mukhopadhyaya, CP-violating HWW couplings at the Large Hadron Collider, Phys. Rev. D 83 (2011) 113004 [arXiv:1104.3327] [INSPIRE].ADSGoogle Scholar
  50. [50]
    S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].ADSGoogle Scholar
  51. [51]
    Y. Chen, A. Falkowski, I. Low and R. Vega-Morales, New Observables for CP-violation in Higgs Decays, Phys. Rev. D 90 (2014) 113006 [arXiv:1405.6723] [INSPIRE].ADSGoogle Scholar
  52. [52]
    CMS collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].ADSGoogle Scholar
  53. [53]
    CMS collaboration, Constraints on anomalous HVV interactions using H to 4l decays, CMS-PAS-HIG-14-014 (2014).
  54. [54]
    S. Dawson et al., Higgs Working Group Report of the Snowmass 2013 Community Planning Study, arXiv:1310.8361 [INSPIRE].
  55. [55]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  56. [56]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  57. [57]
    CMS collaboration, Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    CMS collaboration, Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].ADSGoogle Scholar
  60. [60]
    D0 collaboration, V.M. Abazov et al., Constraints on Spin and Parity of the Higgs Boson \( VH\to Vb\overline{b} \) Final States, Phys. Rev. Lett. 113 (2014) 161802 [arXiv:1407.6369] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    CMS collaboration, Constraints on Anomalous HWW Interactions using Higgs boson decays to W+W- in the fully leptonic final state, CMS-PAS-HIG-14-012 (2014).
  62. [62]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC, Phys. Rev. D 74 (2006) 095001 [hep-ph/0609075] [INSPIRE].ADSGoogle Scholar
  64. [64]
    J.R. Andersen, K. Arnold and D. Zeppenfeld, Azimuthal Angle Correlations for Higgs Boson plus Multi-Jet Events, JHEP 06 (2010) 091 [arXiv:1001.3822] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  65. [65]
    J.R. Andersen, V. Del Duca and C.D. White, Higgs Boson Production in Association with Multiple Hard Jets, JHEP 02 (2009) 015 [arXiv:0808.3696] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D.J. Miller, S.Y. Choi, B. Eberle, M.M. Muhlleitner and P.M. Zerwas, Measuring the spin of the Higgs boson, Phys. Lett. B 505 (2001) 149 [hep-ph/0102023] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Han and J. Jiang, CP violating ZZH coupling at e + e linear colliders, Phys. Rev. D 63 (2001) 096007 [hep-ph/0011271] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S.S. Biswal, D. Choudhury, R.M. Godbole and Mamta, Role of polarization in probing anomalous gauge interactions of the Higgs boson, Phys. Rev. D 79 (2009) 035012 [arXiv:0809.0202] [INSPIRE].
  69. [69]
    S.S. Biswal and R.M. Godbole, Use of transverse beam polarization to probe anomalous VVH interactions at a Linear Collider, Phys. Lett. B 680 (2009) 81 [arXiv:0906.5471] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S. Dutta, K. Hagiwara and Y. Matsumoto, Measuring the Higgs-Vector boson Couplings at Linear e + e Collider, Phys. Rev. D 78 (2008) 115016 [arXiv:0808.0477] [INSPIRE].ADSGoogle Scholar
  71. [71]
    LHeC Study Group collaboration, J.L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S.S. Biswal, R.M. Godbole, B. Mellado and S. Raychaudhuri, Azimuthal Angle Probe of Anomalous HW W Couplings at a High Energy ep Collider, Phys. Rev. Lett. 109 (2012) 261801 [arXiv:1203.6285] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  76. [76]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].ADSGoogle Scholar
  78. [78]
    D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].ADSGoogle Scholar
  82. [82]
    ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev. D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].ADSGoogle Scholar
  83. [83]
    ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2013) 076 [arXiv:1306.4945] [INSPIRE].ADSGoogle Scholar
  84. [84]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].ADSGoogle Scholar
  85. [85]
    ATLAS collaboration, Search for resonances decaying into top-quark pairs using fully hadronic decays in pp collisions with ATLAS at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 116 [arXiv:1211.2202] [INSPIRE].ADSGoogle Scholar
  86. [86]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2012) 041 [arXiv:1207.2409] [INSPIRE].ADSGoogle Scholar
  87. [87]
    ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp collisions at the LHC, JHEP 12 (2012) 086 [arXiv:1210.4813] [INSPIRE].ADSGoogle Scholar
  88. [88]
    ATLAS collaboration, Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2263 [arXiv:1210.4826] [INSPIRE].ADSGoogle Scholar
  89. [89]
    CMS collaboration, Search for Anomalous \( t\overline{t} \) Production in the Highly-Boosted All-Hadronic Final State, JHEP 09 (2012) 029 [Erratum ibid. 1403 (2014) 132] [arXiv:1204.2488] [INSPIRE].
  90. [90]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in lepton+jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 015 [arXiv:1209.4397] [INSPIRE].ADSGoogle Scholar
  91. [91]
    CMS collaboration, Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV, Phys. Lett. B 723 (2013) 280 [arXiv:1212.1910] [INSPIRE].ADSGoogle Scholar
  92. [92]
    C.J.C. Burges and H.J. Schnitzer, Virtual Effects of Excited Quarks as Probes of a Possible New Hadronic Mass Scale, Nucl. Phys. B 228 (1983) 464 [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    C.N. Leung, S.T. Love and S. Rao, Low-Energy Manifestations of a New Interaction Scale: Operator Analysis, Z. Phys. C 31 (1986) 433 [INSPIRE].ADSGoogle Scholar
  94. [94]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via FeynRules, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  97. [97]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  100. [100]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  103. [103]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar
  104. [104]
    T. Han and S. Willenbrock, QCD correction to the ppWH and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    H. Baer, B. Bailey and J.F. Owens, O(α s) Monte Carlo approach to W + Higgs associated production at hadron supercolliders, Phys. Rev. D 47 (1993) 2730 [INSPIRE].ADSGoogle Scholar
  106. [106]
    J. Ohnemus and W.J. Stirling, Order α s corrections to the differential cross-section for the W H intermediate mass Higgs signal, Phys. Rev. D 47 (1993) 2722 [INSPIRE].ADSGoogle Scholar
  107. [107]
    S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 2. Differential Distributions, arXiv:1201.3084 [INSPIRE].
  108. [108]
    S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [INSPIRE].
  109. [109]
    C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP 06 (2012) 108 [arXiv:1203.5788] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    D0 collaboration, E. Johnson, Spin and parity in the \( WH\to \ell \nu b\overline{b} \) channel at the D0 experiment, arXiv:1305.3675 [INSPIRE].
  111. [111]
    T. Han and Y. Li, Genuine CP-odd Observables at the LHC, Phys. Lett. B 683 (2010) 278 [arXiv:0911.2933] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    N.D. Christensen, T. Han and Y. Li, Testing CP-violation in ZZH Interactions at the LHC, Phys. Lett. B 693 (2010) 28 [arXiv:1005.5393] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs Quantum Numbers in Weak Boson Fusion, JHEP 01 (2013) 148 [arXiv:1212.0843] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    CMS collaboration, Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process, arXiv:1307.7135 [INSPIRE].
  115. [115]
    S.S. Biswal, R.M. Godbole, R.K. Singh and D. Choudhury, Signatures of anomalous VVH interactions at a linear collider, Phys. Rev. D 73 (2006) 035001 [Erratum ibid. D 74 (2006) 039904] [hep-ph/0509070] [INSPIRE].
  116. [116]
    R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • R. M. Godbole
    • 1
  • D. J. Miller
    • 2
  • K. A. Mohan
    • 1
  • C. D. White
    • 2
  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.School of Physics and Astronomy, Scottish Universities Physics AllianceUniversity of GlasgowGlasgowUnited Kingdom

Personalised recommendations