Advertisement

\( \mathcal{N}=2 \) super-EYM coloured black holes from defective Lax matrices

Open Access
Regular Article - Theoretical Physics

Abstract

We construct analytical supersymmetric coloured black hole solutions, i.e. non-Abelian black hole solutions that have no asymptotic non-Abelian charge but do have non-Abelian charges on the horizon that contribute to the Bekenstein-Hawking entropy, to two SU(3)-gauged \( \mathcal{N}=2 \) d = supergravities. The analytical construction is made possible due to the fact that the main ingredient is the Bogomol’nyi equation, which under the assumption of spherical symmetry admits a Lax pair formulation. The Lax matrix needed for the coloured black holes must be defective which, even though it is the non-generic and less studied case, is a minor hindrance.

Keywords

Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Huebscher, P. Meessen, T. Ortín and S. Vaula, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    M. Huebscher, P. Meessen, T. Ortín and S. Vaula, N = 2 Einstein-Yang-Millss BPS solutions, JHEP 09 (2008) 099 [arXiv:0806.1477] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    P. Meessen and T. Ortín, The supersymmetric configurations of N = 2, D = 4 supergravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    P. Meessen, Supersymmetric coloured/hairy black holes, Phys. Lett. B 665 (2008) 388 [arXiv:0803.0684] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    P. Bueno, P. Meessen, T. Ortín and P.F. Ramirez, N = 2 Einstein-Yang-Millsstatic two-center solutions, JHEP 12 (2014) 093 [arXiv:1410.4160] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Bartnik and J. Mckinnon, Particle-like solutions of the Einstein-Yang-Mills equations, Phys. Rev. Lett. 61 (1988) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    P. Bizon, Colored black holes, Phys. Rev. Lett. 64 (1990) 2844 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    H.P. Kuenzle and A.K.M. Masood-ul Alam, Spherically symmetric static SU(2) Einstein-Yang-Mills fields, J. Math. Phys. 31 (1990) 928 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    M.S. Volkov and D.V. Galtsov, Black holes in Einstein-Yang-Mills theory (in Russian), Sov. J. Nucl. Phys. 51 (1990) 747 [Yad. Fiz. 51 (1990) 1171] [INSPIRE].
  13. [13]
    Z.-Y. Fan and H. Lü, SU(2)-colored (A)dS black holes in conformal gravity, JHEP 02 (2015) 013 [arXiv:1411.5372] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A.N. Leznov and M.V. Saveliev, Representation theory and integration of nonlinear spherically symmetric equations to gauge theories, Commun. Math. Phys. 74 (1980) 111 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    T. Koikawa, Exact SU(N ) monopole solutions with spherical symmetry by the inverse scattering method, Phys. Lett. B 110 (1982) 129 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    R. Farwell and M. Minami, One-dimensional Toda molecule. 1. General solution, Prog. Theor. Phys. 69 (1983) 1091 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    R. Farwell and M. Minami, One-dimensional Toda molecule. 2. The solutions applied to Bogomolny monopoles with spherical symmetry, Prog. Theor. Phys. 70 (1983) 710 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    A. Anderson, An elegant solution of the N body Toda problem, J. Math. Phys. 37 (1996) 1349 [hep-th/9507092] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    H. Lü and C.N. Pope, SL(N + 1, R) Toda solitons in supergravities, Int. J. Mod. Phys. A 12 (1997) 2061 [hep-th/9607027] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    P. Fré and A.S. Sorin, The integration algorithm for nilpotent orbits of G/H Lax systems: for extremal black holes, arXiv:0903.3771 [INSPIRE].
  21. [21]
    W. Chemissany, P. Fré and A.S. Sorin, The integration algorithm of Lax equation for both generic Lax matrices and generic initial conditions, Nucl. Phys. B 833 (2010) 220 [arXiv:0904.0801] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    W. Chemissany et al., Black holes in supergravity and integrability, JHEP 09 (2010) 080 [arXiv:1007.3209] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    H.-C. Wang, On invariant connections over a principal fibre bundle, Nagoya Math. J. 13 (1958) 1.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    D. Wilkinson and F.A. Bais, Exact SU(N) monopole solutions with spherical symmetry, Phys. Rev. D 19 (1979) 2410 [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    N. Ganoulis, P. Goddard and D.I. Olive, Selfdual monopoles and Toda molecules, Nucl. Phys. B 205 (1982) 601 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H.P. Kuenzle, SU(N ) Einstein-Yang-Mills fields with spherical symmetry, Class. Quant. Grav. 8 (1991) 2283 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    A.P. Protogenov, Exact classical solutions of Yang-Mills sourceless equations, Phys. Lett. B 67 (1977) 62 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012) [INSPIRE].CrossRefMATHGoogle Scholar
  30. [30]
    A. Strominger, Special geometry, Commun. Math. Phys. 133 (1990) 163 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    T. Mohaupt and O. Vaughan, The Hesse potential, the c-map and black hole solutions, JHEP 07 (2012) 163 [arXiv:1112.2876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    P. Meessen, T. Ortín, J. Perz and C.S. Shahbazi, H-FGK formalism for black-hole solutions of N = 2, D = 4 and D = 5 supergravity, Phys. Lett. B 709 (2012) 260 [arXiv:1112.3332] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    T. Ortín, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004) [INSPIRE].CrossRefMATHGoogle Scholar
  36. [36]
    S. Ferrara, E.G. Gimon and R. Kallosh, Magic supergravities, N = 8 and black hole composites, Phys. Rev. D 74 (2006) 125018 [hep-th/0606211] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  40. [40]
    S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].ADSMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.HEP Theory Group, Departamento de FísicaUniversidad de OviedoOviedoSpain
  2. 2.Instituto de Física Teórica UAM/CSICMadridSpain

Personalised recommendations