Renormalization of an Abelian tensor group field theory: solution at leading order

  • Vincent Lahoche
  • Daniele Oriti
  • Vincent Rivasseau
Open Access
Regular Article - Theoretical Physics


We study a just-renormalizable tensorial group field theory of rank six with quartic melonic interactions and Abelian group U(1). We introduce the formalism of the intermediate field, which allows a precise characterization of the leading order Feynman graphs. We define the renormalization of the model, compute its (perturbative) renormalization group flow and write its expansion in terms of effective couplings. We then establish closed equations for the two point and four point functions at leading (melonic) order. Using the effective expansion and its uniform exponential bounds we prove that these equations admit a unique solution at small renormalized coupling.


Models of Quantum Gravity Renormalization Regularization and Renormalons 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Gurau and J.P. Ryan, Colored Tensor ModelsA review, SIGMA 8 (2012) 020 [arXiv:1109.4812] [INSPIRE].MathSciNetMATHGoogle Scholar
  2. [2]
    V. Rivasseau, Quantum Gravity and Renormalization: The Tensor Track, AIP Conf. Proc. 1444 (2011) 18 [arXiv:1112.5104] [INSPIRE].ADSGoogle Scholar
  3. [3]
    V. Rivasseau, The Tensor Track: an Update, arXiv:1209.5284 [INSPIRE].
  4. [4]
    V. Rivasseau, The Tensor Track, III, Fortsch. Phys. 62 (2014) 81 [arXiv:1311.1461] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    T. Thiemann, Modern canonical quantum General Relativity, Cambridge University Press, Cambridge U.K. (2007).CrossRefMATHGoogle Scholar
  6. [6]
    A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quant. Grav. 21 (2004) R53 [gr-qc/0404018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    C. Rovelli, Quantum Gravity, Cambridge University Press, (2006).Google Scholar
  8. [8]
    D.V. Boulatov, A model of three-dimensional lattice gravity, Mod. Phys. Lett. A 7 (1992) 1629 [hep-th/9202074] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H. Ooguri, Topological lattice models in four-dimensions, Mod. Phys. Lett. A 7 (1992) 2799 [hep-th/9205090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    L. Freidel, Group field theory: An overview, Int. J. Theor. Phys. 44 (2005) 1769 [hep-th/0505016] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    D. Oriti, The microscopic dynamics of quantum space as a group field theory, arXiv:1110.5606 [INSPIRE].
  12. [12]
    D. Oriti, The group field theory approach to quantum gravity, gr-qc/0607032 [INSPIRE].
  13. [13]
    D. Oriti, Quantum gravity as a quantum field theory of simplicial geometry, gr-qc/0512103 [INSPIRE].
  14. [14]
    D. Oriti, The Group field theory approach to quantum gravity: Some recent results, in The Planck Scale: Proceedings of the XXV Max Born Symposium, J. Kowalski-Glikman et al. eds., AIP: conference proceedings (2009), [arXiv:0912.2441] [INSPIRE].
  15. [15]
    A. Baratin and D. Oriti, Ten questions on Group Field Theory (and their tentative answers), J. Phys. Conf. Ser. 360 (2012) 012002 [arXiv:1112.3270] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    T. Krajewski, Group field theories, PoS(QGQGS 2011)005 [arXiv:1210.6257] [INSPIRE].
  17. [17]
    J. Ambjørn, B. Durhuus and T. Jonsson, Three-dimensional simplicial quantum gravity and generalized matrix models, Mod. Phys. Lett. A 6 (1991) 1133 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M. Gross, Tensor models and simplicial quantum gravity in > 2-D, Nucl. Phys. Proc. Suppl. 25A (1992) 144 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    N. Sasakura, Tensor model for gravity and orientability of manifold, Mod. Phys. Lett. A 6 (1991) 2613 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    V.A. Kazakov, Bilocal Regularization of Models of Random Surfaces, Phys. Lett. B 150 (1985) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. David, A Model of Random Surfaces with Nontrivial Critical Behavior, Nucl. Phys. B 257 (1985) 543 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2-D Gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    C. Rovelli, The basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis, Phys. Rev. D 48 (1993) 2702 [hep-th/9304164] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    R. De Pietri, L. Freidel, K. Krasnov and C. Rovelli, Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space, Nucl. Phys. B 574 (2000) 785 [hep-th/9907154] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M.P. Reisenberger and C. Rovelli, Space-time as a Feynman diagram: The connection formulation, Class. Quant. Grav. 18 (2001) 121 [gr-qc/0002095] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev. Rel. 16 (2013) 3 [arXiv:1205.2019] [INSPIRE].CrossRefMATHGoogle Scholar
  27. [27]
    C. Rovelli, Zakopane lectures on loop gravity, PoS(QGQGS 2011)003 [arXiv:1102.3660] [INSPIRE].
  28. [28]
    A. Baratin and D. Oriti, Group field theory with non-commutative metric variables, Phys. Rev. Lett. 105 (2010) 221302 [arXiv:1002.4723] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Baratin and D. Oriti, Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity, Phys. Rev. D 85 (2012) 044003 [arXiv:1111.5842] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D. Oriti, Group field theory as the 2nd quantization of Loop Quantum Gravity, arXiv:1310.7786 [INSPIRE].
  31. [31]
    D. Oriti, Group Field Theory and Loop Quantum Gravity, arXiv:1408.7112 [INSPIRE].
  32. [32]
    D. Oriti, J.P. Ryan and J. Thürigen, Group field theories for all loop quantum gravity, New J. Phys. 17 (2015) 023042 [arXiv:1409.3150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R. Gurau, Colored Group Field Theory, Commun. Math. Phys. 304 (2011) 69 [arXiv:0907.2582] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    R. Gurau, Lost in Translation: Topological Singularities in Group Field Theory, Class. Quant. Grav. 27 (2010) 235023 [arXiv:1006.0714] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    R. Gurau, The 1/N expansion of colored tensor models, Annales Henri Poincaré 12 (2011) 829 [arXiv:1011.2726] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    R. Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension, Annales Henri Poincaré 13 (2012) 399 [arXiv:1102.5759] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    R. Gurau and V. Rivasseau, The 1/N expansion of colored tensor models in arbitrary dimension, Europhys. Lett. 95 (2011) 50004 [arXiv:1101.4182] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models in the large-N limit, Nucl. Phys. B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    R. Gurau, Universality for Random Tensors, arXiv:1111.0519 [INSPIRE].
  40. [40]
    V. Bonzom, R. Gurau and V. Rivasseau, Random tensor models in the large-N limit: Uncoloring the colored tensor models, Phys. Rev. D 85 (2012) 084037 [arXiv:1202.3637] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Tanasa, Multi-orientable Group Field Theory, J. Phys. A 45 (2012) 165401 [arXiv:1109.0694] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  42. [42]
    S. Dartois, V. Rivasseau and A. Tanasa, The 1/N expansion of multi-orientable random tensor models, Annales Henri Poincaré 15 (2014) 965 [arXiv:1301.1535] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    M. Raasakka and A. Tanasa, Next-to-leading order in the large N expansion of the multi-orientable random tensor model, Annales Henri Poincaré 16 (2015) 1267 [arXiv:1310.3132] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    E. Fusy and A. Tanasa, Asymptotic expansion of the multi-orientable random tensor model, arXiv:1408.5725 [INSPIRE].
  45. [45]
    R. Gurau, The Double Scaling Limit in Arbitrary Dimensions: A Toy Model, Phys. Rev. D 84 (2011) 124051 [arXiv:1110.2460] [INSPIRE].ADSGoogle Scholar
  46. [46]
    W. Kaminski, D. Oriti and J.P. Ryan, Towards a double-scaling limit for tensor models: probing sub-dominant orders, New J. Phys. 16 (2014) 063048 [arXiv:1304.6934] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Dartois, R. Gurau and V. Rivasseau, Double Scaling in Tensor Models with a Quartic Interaction, JHEP 09 (2013) 088 [arXiv:1307.5281] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    V. Bonzom, R. Gurau, J.P. Ryan and A. Tanasa, The double scaling limit of random tensor models, JHEP 09 (2014) 051 [arXiv:1404.7517] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    V. Rivasseau, The Tensor Theory Space, Fortsch. Phys. 62 (2014) 835 [arXiv:1407.0284] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    D. Oriti, Disappearance and emergence of space and time in quantum gravity, Stud. Hist. Philos. Mod. Phys. 46 (2014) 186 [arXiv:1302.2849] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    B.L. Hu, Can spacetime be a condensate?, Int. J. Theor. Phys. 44 (2005) 1785 [gr-qc/0503067] [INSPIRE].
  52. [52]
    T.A. Koslowski, Dynamical Quantum Geometry (DQG Programme), arXiv:0709.3465 [INSPIRE].
  53. [53]
    T. Koslowski and H. Sahlmann, Loop quantum gravity vacuum with nondegenerate geometry, SIGMA 8 (2012) 026 [arXiv:1109.4688] [INSPIRE].MathSciNetMATHGoogle Scholar
  54. [54]
    B. Dittrich and M. Geiller, A new vacuum for Loop Quantum Gravity, arXiv:1401.6441 [INSPIRE].
  55. [55]
    B. Dittrich, F.C. Eckert and M. Martin-Benito, Coarse graining methods for spin net and spin foam models, New J. Phys. 14 (2012) 035008 [arXiv:1109.4927] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    B. Bahr, B. Dittrich, F. Hellmann and W. Kaminski, Holonomy Spin Foam Models: Definition and Coarse Graining, Phys. Rev. D 87 (2013) 044048 [arXiv:1208.3388] [INSPIRE].ADSGoogle Scholar
  57. [57]
    B. Dittrich, M. Martín-Benito and E. Schnetter, Coarse graining of spin net models: dynamics of intertwiners, New J. Phys. 15 (2013) 103004 [arXiv:1306.2987] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative Quantum Gravity, Phys. Rept. 519 (2012) 127 [arXiv:1203.3591] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    D. Benedetti and J. Henson, Spacetime condensation in (2+1)-dimensional CDT from a Hořava-Lifshitz minisuperspace model, arXiv:1410.0845 [INSPIRE].
  60. [60]
    J. Mielczarek, Big Bang as a critical point, arXiv:1404.0228 [INSPIRE].
  61. [61]
    J. Magueijo, L. Smolin and C.R. Contaldi, Holography and the scale-invariance of density fluctuations, Class. Quant. Grav. 24 (2007) 3691 [astro-ph/0611695] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    S. Gielen, D. Oriti and L. Sindoni, Cosmology from Group Field Theory Formalism for Quantum Gravity, Phys. Rev. Lett. 111 (2013) 031301 [arXiv:1303.3576] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Gielen, D. Oriti and L. Sindoni, Homogeneous cosmologies as group field theory condensates, JHEP 06 (2014) 013 [arXiv:1311.1238] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    L. Sindoni, Effective equations for GFT condensates from fidelity, arXiv:1408.3095 [INSPIRE].
  65. [65]
    S. Gielen and D. Oriti, Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics, New J. Phys. 16 (2014) 123004 [arXiv:1407.8167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    S. Gielen, Perturbing a quantum gravity condensate, Phys. Rev. D 91 (2015) 043526 [arXiv:1411.1077] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J. Ben Geloun and V. Bonzom, Radiative corrections in the Boulatov-Ooguri tensor model: The 2-point function, Int. J. Theor. Phys. 50 (2011) 2819 [arXiv:1101.4294] [INSPIRE].CrossRefMATHGoogle Scholar
  68. [68]
    J. Ben Geloun and V. Rivasseau, A Renormalizable 4-Dimensional Tensor Field Theory, Commun. Math. Phys. 318 (2013) 69 [arXiv:1111.4997] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    J. Ben Geloun and V. Rivasseau, Addendum toA Renormalizable 4-Dimensional Tensor Field Theory’, Commun. Math. Phys. 322 (2013) 957 [arXiv:1209.4606] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    J. Ben Geloun and E.R. Livine, Some classes of renormalizable tensor models, J. Math. Phys. 54 (2013) 082303 [arXiv:1207.0416] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    J. Ben Geloun, Renormalizable Models in Rank d ≥ 2 Tensorial Group Field Theory, Commun. Math. Phys. 332 (2014) 117 [arXiv:1306.1201] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    T. Krajewski, Schwinger-Dyson Equations in Group Field Theories of Quantum Gravity, arXiv:1211.1244 [INSPIRE].
  73. [73]
    M. Raasakka and A. Tanasa, Combinatorial Hopf algebra for the Ben Geloun-Rivasseau tensor field theory, arXiv:1306.1022 [INSPIRE].
  74. [74]
    T. Krajewski and R. Toriumi, Polchinskis equation for group field theory, Fortsch. Phys. 62 (2014) 855 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    S. Carrozza, D. Oriti and V. Rivasseau, Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions, Commun. Math. Phys. 327 (2014) 603 [arXiv:1207.6734] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    D.O. Samary and F. Vignes-Tourneret, Just Renormalizable TGFTs on U(1)d with Gauge Invariance, Commun. Math. Phys. 329 (2014) 545 [arXiv:1211.2618] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    S. Carrozza, D. Oriti and V. Rivasseau, Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions, Commun. Math. Phys. 330 (2014) 581 [arXiv:1303.6772] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    S. Carrozza, Tensorial methods and renormalization in Group Field Theories, arXiv:1310.3736 [INSPIRE].
  79. [79]
    J. Ben Geloun, Two and four-loop β-functions of rank 4 renormalizable tensor field theories, Class. Quant. Grav. 29 (2012) 235011 [arXiv:1205.5513] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    J. Ben Geloun, Asymptotic Freedom of Rank 4 Tensor Group Field Theory, arXiv:1210.5490 [INSPIRE].
  81. [81]
    J. Ben Geloun and D.O. Samary, 3D Tensor Field Theory: Renormalization and One-loop β-functions, Annales Henri Poincaré 14 (2013) 1599 [arXiv:1201.0176] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  82. [82]
    D. Ousmane Samary, β-functions of U(1)d gauge invariant just renormalizable tensor models, Phys. Rev. D 88 (2013) 105003 [arXiv:1303.7256] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S. Carrozza, Discrete Renormalization Group for SU(2) Tensorial Group Field Theory, arXiv:1407.4615 [INSPIRE].
  84. [84]
    A. Baratin, S. Carrozza, D. Oriti, J. Ryan and M. Smerlak, Melonic phase transition in group field theory, Lett. Math. Phys. 104 (2014) 1003 [arXiv:1307.5026] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  85. [85]
    R. Gurau and J.P. Ryan, Melons are branched polymers, Annales Henri Poincaré 15 (2014) 2085 [arXiv:1302.4386] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  86. [86]
    D. Benedetti, J. Ben Geloun and D. Oriti, Functional Renormalisation Group Approach for Tensorial Group Field Theory: a Rank-3 Model, JHEP 03 (2015) 084 [arXiv:1411.3180] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  87. [87]
    V. Rivasseau, From perturbative to constructive renormalization, Princeton series in physics, Princeton University Press, Princeton U.S.A. (1991).CrossRefGoogle Scholar
  88. [88]
    T. Delepouve and V. Rivasseau, Constructive Tensor Field Theory: The T 34 Model, arXiv:1412.5091 [INSPIRE].
  89. [89]
    R. Gurau, The 1/N Expansion of Tensor Models Beyond Perturbation Theory, Commun. Math. Phys. 330 (2014) 973 [arXiv:1304.2666] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    T. Delepouve, R. Gurau and V. Rivasseau, Universality and Borel Summability of Arbitrary Quartic Tensor Models, arXiv:1403.0170 [INSPIRE].
  91. [91]
    V.A. Nguyen, S. Dartois and B. Eynard, An analysis of the intermediate field theory of T 4 tensor model, JHEP 01 (2015) 013 [arXiv:1409.5751] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    H. Grosse and R. Wulkenhaar, Renormalization of ϕ 4 theory on noncommutative R 4 in the matrix base, Commun. Math. Phys. 256 (2005) 305 [hep-th/0401128] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  93. [93]
    H. Grosse and R. Wulkenhaar, Progress in solving a noncommutative quantum field theory in four dimensions, arXiv:0909.1389 [INSPIRE].
  94. [94]
    H. Grosse and R. Wulkenhaar, Self-Dual Noncommutative ϕ 4 -Theory in Four Dimensions is a Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory, Commun. Math. Phys. 329 (2014) 1069 [arXiv:1205.0465] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    H. Grosse and R. Wulkenhaar, Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity, arXiv:1406.7755 [INSPIRE].
  96. [96]
    D.O. Samary, Closed equations of the two-point functions for tensorial group field theory, Class. Quant. Grav. 31 (2014) 185005 [arXiv:1401.2096] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  97. [97]
    D.O. Samary, C.I. Pérez-Sánchez, F. Vignes-Tourneret and R. Wulkenhaar, Correlation functions of just renormalizable tensorial group field theory: The melonic approximation, arXiv:1411.7213 [INSPIRE].
  98. [98]
    G. Gallavotti and F. Nicolò, renormalization theory in four-dimensional scalar fields. I, Commun. Math. Phys. 100 (1985) 545 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    V. Rivasseau, Constructive Matrix Theory, JHEP 09 (2007) 008 [arXiv:0706.1224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  100. [100]
    G. ’t Hooft, Rigorous Construction of Planar Diagram Field Theories in Four-dimensional Euclidean Space, Commun. Math. Phys. 88 (1983) 1 [INSPIRE].
  101. [101]
    V. Rivasseau, Construction and Borel Summability of Planar Four-dimensional Euclidean Field Theory, Commun. Math. Phys. 95 (1984) 445 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Vincent Lahoche
    • 1
  • Daniele Oriti
    • 2
  • Vincent Rivasseau
    • 3
    • 4
  1. 1.LPT-UMR 8627, Université Paris 11Orsay CedexFrance
  2. 2.Max Planck Institute for Gravitational PhysicsAlbert Einstein InstitutePotsdamGermany
  3. 3.Laboratoire de physique théorique, UMR 8627, Université Paris 11Orsay CedexFrance
  4. 4.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations