Advertisement

IIB supergravity and the E6(6) covariant vector-tensor hierarchy

  • Franz Ciceri
  • Bernard de Wit
  • Oscar Varela
Open Access
Regular Article - Theoretical Physics

Abstract

IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the 27 two-form fields that are required by the vector-tensor hierarchy of the five-dimensional theory. The missing 5 two-form fields must transform in the same representation as a descendant of the ten-dimensional ‘dual graviton’. The invariant E6(6) symmetric tensor that appears in the vector-tensor hierarchy is reproduced. Generalized vielbeine are derived from the supersymmetry transformations of the vector fields, as well as consistent expressions for the USp(8) covariant fermion fields. Implications are discussed for the consistency of the truncation of IIB supergravity compactified on the five-sphere to maximal gauged supergravity in five space-time dimensions with an SO(6) gauge group.

Keywords

Supersymmetry and Duality Extended Supersymmetry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. de Wit and H. Nicolai, d = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    B. de Wit and H. Nicolai, The consistency of the S 7 truncation in D = 11 supergravity, Nucl. Phys. B 281 (1987) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Nicolai and K. Pilch, Consistent truncation of D = 11 supergravity on AdS 4 × S 7, JHEP 03 (2012) 099 [arXiv:1112.6131] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    B. de Wit and H. Nicolai, Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions, JHEP 05 (2013) 077 [arXiv:1302.6219] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    H. Godazgar, M. Godazgar and H. Nicolai, Testing the non-linear flux ansatz for maximal supergravity, Phys. Rev. D 87 (2013) 085038 [arXiv:1303.1013] [INSPIRE].ADSGoogle Scholar
  6. [6]
    H. Godazgar, M. Godazgar and H. Nicolai, Generalised geometry from the ground up, JHEP 02 (2014) 075 [arXiv:1307.8295] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    H. Godazgar, M. Godazgar and H. Nicolai, Nonlinear Kaluza-Klein theory for dual fields, Phys. Rev. D 88 (2013) 125002 [arXiv:1309.0266] [INSPIRE].ADSMATHGoogle Scholar
  8. [8]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 5 supergravities, Nucl. Phys. B 716 (2005) 215 [hep-th/0412173] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  14. [14]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  19. [19]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
  22. [22]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    T. Damour, M. Henneaux and H. Nicolai, E 10 and asmall tension expansionof M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    T. Damour, A. Kleinschmidt and H. Nicolai, K(E 10), supergravity and fermions, JHEP 08 (2006) 046 [hep-th/0606105] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. West, Generalised geometry, eleven dimensions and E 11, JHEP 02 (2012) 018 [arXiv:1111.1642] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.H. Schwarz and P.C. West, Symmetries and transformations of chiral N = 2 D = 10 supergravity, Phys. Lett. B 126 (1983) 301 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.H. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys. B 226 (1983) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.S. Howe and P.C. West, The complete N = 2, D = 10 supergravity, Nucl. Phys. B 238 (1984) 181 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E. Cremmer, Supergravities in five dimensions, in Superspace and supergravity, S.W. Hawking and M. Roček eds., Cambridge University Press, Cambridge U.K. (1981), reprinted in Supergravities in diverse dimensions, A. Salam and E. Sezgin eds., North-Holland/World Scientific (1989) 422.Google Scholar
  33. [33]
    M. Günaydin, L.J. Romans and N.P. Warner, Compact and noncompact gauged supergravity theories in five dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C.M. Hull, Duality in gravity and higher spin gauge fields, JHEP 09 (2001) 027 [hep-th/0107149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: a no go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    H. Godazgar, M. Godazgar and H. Nicolai, Embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions, Phys. Rev. D 89 (2014) 045009 [arXiv:1312.1061] [INSPIRE].ADSMATHGoogle Scholar
  40. [40]
    O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    G. Dall’Agata, K. Lechner and D.P. Sorokin, Covariant actions for the bosonic sector of D=10 IIB supergravity,Class. Quant. Grav. 14 (1997) L195 [hep-th/9707044] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D=10 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Günaydin and N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2, D=10 supergravity and the unitary supermultiplets of U(2,2/4),Class. Quant. Grav. 2 (1985) L11 [INSPIRE].CrossRefMATHGoogle Scholar
  44. [44]
    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    B. de Wit and H. Nicolai, On the relation between D = 4 and D = 11 supergravity, Nucl. Phys. B 243 (1984) 91 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    B. de Wit, H. Nicolai and N.P. Warner, The embedding of gauged N = 8 supergravity into D=11 supergravity,Nucl. Phys. B 255 (1985) 29 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Nikhef Theory GroupAmsterdamThe Netherlands
  2. 2.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands
  3. 3.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeUnited States

Personalised recommendations