Holography of 3d-3d correspondence at large N

  • Dongmin Gang
  • Nakwoo Kim
  • Sangmin Lee
Open Access
Regular Article - Theoretical Physics


We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an \( \mathcal{N}=2 \) superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS4 geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the perturbative free energy of a Chern-Simons theory on hyperbolic 3-manifold. The conjecture claims that the tree, one-loop and two-loop terms all share the same N3 scaling behavior and are proportional to the volume of the 3-manifold, while the three-loop and higher terms are suppressed at large N. Under mild assumptions, we prove the tree and one-loop parts of the conjecture. For the two-loop part, we test the conjecture numerically in a number of examples and find precise agreement. We also confirm the suppression of higher loop terms in a few examples.


Gauge-gravity correspondence Chern-Simons Theories M-Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    P. Yi, Anomaly of (2, 0) theories, Phys. Rev. D 64 (2001) 106006 [hep-th/0106165] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  6. [6]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    N. Wyllard, A N − 1 conformal Toda field theory correlation functions from conformal \( \mathcal{N}=2 \) SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D. Gaiotto and J.M. Maldacena, The Gravity duals of \( \mathcal{N}=2 \) superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144 [arXiv:1206.6339] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes, arXiv:1211.0144 [INSPIRE].
  12. [12]
    H.-C. Kim, S. Kim, S.-S. Kim and K. Lee, The general M5-brane superconformal index, arXiv:1307.7660 [INSPIRE].
  13. [13]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T.D. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Y. Terashima and M. Yamazaki, SL(2, ℝ) Chern-Simons, Liouville and Gauge Theory on Duality Walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    T.D. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys. 17 (2013) 975 [arXiv:1112.5179] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    D. Gang, E. Koh, S. Lee and J. Park, Superconformal Index and 3d-3d Correspondence for Mapping Cylinder/Torus, JHEP 01 (2014) 063 [arXiv:1305.0937] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Yagi, 3d TQFT from 6d SCFT, JHEP 08 (2013) 017 [arXiv:1305.0291] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Lee and M. Yamazaki, 3d Chern-Simons Theory from M5-branes, JHEP 12 (2013) 035 [arXiv:1305.2429] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    C. Cordova and D.L. Jafferis, Complex Chern-Simons from M5-branes on the Squashed Three-Sphere, arXiv:1305.2891 [INSPIRE].
  22. [22]
    J.P. Gauntlett, N. Kim and D. Waldram, M Five-branes wrapped on supersymmetric cycles, Phys. Rev. D 63 (2001) 126001 [hep-th/0012195] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Pernici and E. Sezgin, Spontaneous Compactification of Seven-dimensional Supergravity Theories, Class. Quant. Grav. 2 (1985) 673 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    D. Gang, N. Kim and S. Lee, Holography of Wrapped M5-branes and Chern-Simons theory, Phys. Lett. B 733 (2014) 316 [arXiv:1401.3595] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Cheon, H. Kim and N. Kim, Calculating the partition function of \( \mathcal{N}=2 \) Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: \( \mathcal{N}=2 \) Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    T.D. Dimofte, Quantum Riemann Surfaces in Chern-Simons Theory, Adv. Theor. Math. Phys. 17 (2013) 479 [arXiv:1102.4847] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    T.D. Dimofte and S. Garoufalidis, The Quantum content of the gluing equations, arXiv:1202.6268 [INSPIRE].
  32. [32]
    D. Martelli, A. Passias and J. Sparks, The gravity dual of supersymmetric gauge theories on a squashed three-sphere, Nucl. Phys. B 864 (2012) 840 [arXiv:1110.6400] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistent nonlinear KK reduction of 11d supergravity on AdS 7 × S 4 and selfduality in odd dimensions, Phys. Lett. B 469 (1999) 96 [hep-th/9905075] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistency of the AdS 7 × S 4 reduction and the origin of selfduality in odd dimensions, Nucl. Phys. B 581 (2000) 179 [hep-th/9911238] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    M. Cvetič, H. Lü, C.N. Pope, A. Sadrzadeh and T.A. Tran, S 3 and S 4 reductions of type IIA supergravity, Nucl. Phys. B 590 (2000) 233 [hep-th/0005137] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  39. [39]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    J.P. Gauntlett, N. Kim, S. Pakis and D. Waldram, M theory solutions with AdS factors, Class. Quant. Grav. 19 (2002) 3927 [hep-th/0202184] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    T.D. Dimofte, Complex Chern-Simons theory at level k via the 3d-3d correspondence, arXiv:1409.0857 [INSPIRE].
  42. [42]
    Y. Terashima and M. Yamazaki, Semiclassical Analysis of the 3d/3d Relation, Phys. Rev. D 88 (2013) 026011 [arXiv:1106.3066] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Ellegaard Andersen and R. Kashaev, A TQFT from Quantum Teichmüller Theory, Commun. Math. Phys. 330 (2014) 887 [arXiv:1109.6295] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    T.D. Dimofte, S. Gukov, J. Lenells and D. Zagier, Exact Results for Perturbative Chern-Simons Theory with Complex Gauge Group, Commun. Num. Theor. Phys. 3 (2009) 363 [arXiv:0903.2472] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    P. Menal-Ferrer and J. Porti, Higher dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds, J. Topology 7 (2014) 69 [arXiv:1110.3718].MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    R.M. Kashaev, The hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269 [q-alg/9601025].MathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, math.GT/9905075.
  48. [48]
    T.D. Dimofte and S. Gukov, Quantum Field Theory and the Volume Conjecture, Contemp. Math. 541 (2011) 41 [arXiv:1003.4808] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory and the A polynomial, Commun. Math. Phys. 255 (2005) 577 [hep-th/0306165] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    S. Gukov and H. Murakami, SL(2, ℂ) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial, Lett. Math. Phys. 86 (2008) 79 [math.GT/0608324] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    S. Garoufalidis, D.P. Thurston and C.K. Zickert, The complex volume of SL(n, C)-representations of 3-manifolds, arXiv:1111.2828.
  53. [53]
    S. Garoufalidis, M. Goerner and C.K. Zickert, Gluing equations for PGL(n, C)-representations of 3-manifolds, arXiv:1207.6711.
  54. [54]
    T.D. Dimofte, M. Gabella and A.B. Goncharov, K-Decompositions and 3d Gauge Theories, arXiv:1301.0192 [INSPIRE].
  55. [55]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    V.V. Fock and A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, math.AG/0311149.
  57. [57]
    M. Culler, N. Dunfield and J.R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds,
  58. [58]
    E. Witten, Analytic Continuation Of Chern-Simons Theory, arXiv:1001.2933 [INSPIRE].
  59. [59]
    I. Bah, M. Gabella and N. Halmagyi, BPS M5-branes as Defects for the 3d-3d Correspondence, JHEP 11 (2014) 112 [arXiv:1407.0403] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  60. [60]
    D. Farquet and J. Sparks, Wilson loops on three-manifolds and their M2-brane duals, JHEP 12 (2014) 173 [arXiv:1406.2493] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.School of PhysicsKorea Institute for Advanced StudySeoulSouth Korea
  2. 2.Department of Physics and Research Institute of Basic ScienceKyung Hee UniversitySeoulSouth Korea
  3. 3.Center for Theoretical Physics, Department of Physics and Astronomy, College of Liberal StudiesSeoul National UniversitySeoulSouth Korea

Personalised recommendations