Advertisement

Dirac gauginos, R symmetry and the 125 GeV Higgs

  • Enrico Bertuzzo
  • Claudia Frugiuele
  • Thomas Grégoire
  • Eduardo Pontón
Open Access
Regular Article - Theoretical Physics

Abstract

We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. We estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.

Keywords

Higgs Physics Beyond Standard Model Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  3. [3]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G.D. Kribs and A. Martin, Supersoft supersymmetry is super-safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  5. [5]
    L.J. Hall, Alternative low-energy supersymmetry, Mod. Phys. Lett. A 5 (1990) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L.J. Hall and L. Randall, U(1)R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  8. [8]
    C. Frugiuele and T. Gregoire, Making the sneutrino a Higgs with a U(1)R lepton number, Phys. Rev. D 85 (2012) 015016 [arXiv:1107.4634] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Davies, J. March-Russell and M. McCullough, A supersymmetric one Higgs doublet model, JHEP 04 (2011) 108 [arXiv:1103.1647] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    F. Riva, C. Biggio and A. Pomarol, Is the 125 GeV Higgs the superpartner of a neutrino?, JHEP 02 (2013) 081 [arXiv:1211.4526] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Benakli, M.D. Goodsell and F. Staub, Dirac gauginos and the 125 GeV Higgs, JHEP 06 (2013)073 [arXiv:1211.0552] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Chakraborty and S. Roy, Higgs boson mass, neutrino masses and mixing and keV dark matter in an U(1)Rlepton number model, JHEP 01 (2014) 101 [arXiv:1309.6538] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Fok, G.D. Kribs, A. Martin and Y. Tsai, Electroweak baryogenesis in R-symmetric supersymmetry, Phys. Rev. D 87 (2013) 055018 [arXiv:1208.2784] [INSPIRE].ADSGoogle Scholar
  14. [14]
    H. Itoyama and N. Maru, 126 GeV Higgs boson associated with D-term triggered dynamical supersymmetry breaking, arXiv:1312.4157 [INSPIRE].
  15. [15]
    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The last vestiges of naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    C. Csáki, J. Goodman, R. Pavesi and Y. Shirman, The m D -b M problem of Dirac gauginos and its solutions, Phys. Rev. D 89 (2014) 055005 [arXiv:1310.4504] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Frugiuele, T. Gregoire, P. Kumar and E. Ponton, ‘L = R -U(1)R as the origin of leptonicRPV’, JHEP 03 (2013) 156 [arXiv:1210.0541] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Carena, M. Quirós and C.E.M. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].
  19. [19]
    M.D. Goodsell, Two-loop RGEs with Dirac gaugino masses, JHEP 01 (2013) 066 [arXiv:1206.6697] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Beauchesne and T. Gregoire, Electroweak precision measurements in supersymmetric models with a U(1)R lepton number, JHEP 05 (2014) 051 [arXiv:1402.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  22. [22]
    T. Gherghetta, B. von Harling, A.D. Medina and M.A. Schmidt, The scale-invariant NMSSM and the 126 GeV Higgs boson, JHEP 02 (2013) 032 [arXiv:1212.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs mass and unnatural supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    ATLAS collaboration, Physics at a high-luminosity LHC with ATLAS, arXiv:1307.7292 [INSPIRE].
  26. [26]
    CMS collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the Snowmass process, arXiv:1307.7135 [INSPIRE].
  27. [27]
    CMS collaboration, Search for light- and heavy-flavor three-jet resonances in multijet final states at 8 TeV, CMS-PAS-EXO-12-049, CERN, Geneva Switzerland (2012).
  28. [28]
    ATLAS collaboration, Search for massive particles in multijet signatures with the ATLAS detector in \( \sqrt{s} \) = 8 TeV pp collisions at the LHC, ATLAS-CONF-2013-091, CERN, Geneva Switzerland (2013).

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Enrico Bertuzzo
    • 1
    • 2
  • Claudia Frugiuele
    • 3
  • Thomas Grégoire
    • 4
  • Eduardo Pontón
    • 5
  1. 1.Institut de Physique Théorique, CEA-SaclayGif-sur-YvetteFrance
  2. 2.IFAE, Universitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.FermilabBataviaUnited States
  4. 4.Ottawa-Carleton Institute for Physics, Department of PhysicsCarleton UniversityOttawaCanada
  5. 5.ICTP South American Institute for Fundamental Research and Instituto de Física Teórica — Universidade Estadual Paulista (UNESP)São PauloBrazil

Personalised recommendations