Hiding missing energy in missing energy

Open Access
Regular Article - Theoretical Physics


Searches for supersymmetry (SUSY) often rely on a combination of hard physics objects (jets, leptons) along with large missing transverse energy to separate New Physics from Standard Model hard processes. We consider a class of “double-invisible” SUSY scenarios: where squarks, stops and sbottoms have a three-body decay into two (rather than one) invisible final-state particles. This occurs naturally when the LSP carries an additional conserved quantum number under which other superpartners are not charged. In these topologies, the available energy is diluted into invisible particles, reducing the observed missing energy and visible energy. This can lead to sizable changes in the sensitivity of existing searches, dramatically changing the qualitative constraints on superpartners. In particular, for mLSP ≳ 160 GeV, we find no robust constraints from the LHC at any squark mass for any generation, while for lighter LSPs we find significant reductions in constraints. If confirmed by a full reanalysis from the collaborations, such scenarios allow for the possibility of significantly more natural SUSY models. While not realized in the MSSM, such phenomenology occurs naturally in models with mixed sneutrinos, Dirac gauginos and NMSSM-like models.


Phenomenological Models Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic \( t\overline{t} \) + etmiss final state in 21 fb −1 of p-pcollisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-024.
  3. [3]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].ADSGoogle Scholar
  4. [4]
    ATLAS collaboration, Search for direct top squark pair production in final states with two leptons in \( \sqrt{s}=8 \) TeV pp collisions using 20fb −1 of ATLAS data., ATLAS-CONF-2013-048.
  5. [5]
    CMS Collaboration, Search for New Physics in the Multijets and Missing Momentum Final State in Proton-Proton Collisions at 8 TeV, CMS-PAS-SUS-13-012.
  6. [6]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2013-047.
  7. [7]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].ADSGoogle Scholar
  9. [9]
    B.S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao et al., Non-thermal Dark Matter and the Moduli Problem in String Frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L.J. Hall and Y. Nomura, Spread Supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Arkani-Hamed, IFT Inaugural Conference,
  12. [12]
    G. Kane, P. Kumar, R. Lu and B. Zheng, Higgs Mass Prediction for Realistic String/M Theory Vacua, Phys. Rev. D 85 (2012) 075026 [arXiv:1112.1059] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Arkani-Hamed, SavasFest: Celebration of the Life and Work of Savas Dimopoulos,
  14. [14]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation of supersymmetry breaking at the Large Hadron Collider, Phys. Rev. D 87 (2013) 015028 [arXiv:1207.5453] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].
  17. [17]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the Third Generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    L.M. Carpenter, D.E. Kaplan and E.-J. Rhee, Reduced fine-tuning in supersymmetry with R-parity violation, Phys. Rev. Lett. 99 (2007) 211801 [hep-ph/0607204] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [Erratum ibid. 1401 (2014) 109] [arXiv:1308.1841] [INSPIRE].
  22. [22]
    J.A. Evans, Y. Kats, D. Shih and M.J. Strassler, Toward Full LHC Coverage of Natural Supersymmetry, JHEP 07 (2014) 101 [arXiv:1310.5758] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Fan, M. Reece and J.T. Ruderman, Stealth Supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Fan, M. Reece and J.T. Ruderman, A Stealth Supersymmetry Sampler, JHEP 07 (2012) 196 [arXiv:1201.4875] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    ATLAS collaboration, Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS, Phys. Lett. B 707 (2012) 478 [arXiv:1109.2242] [INSPIRE].ADSGoogle Scholar
  26. [26]
    CMS collaboration, Search for supersymmetry in events with photons and low missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 719 (2013) 42 [arXiv:1210.2052] [INSPIRE].ADSGoogle Scholar
  27. [27]
    ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and multi-track displaced vertex in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 280 [arXiv:1210.7451] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Agashe, R. Franceschini, D. Kim and K. Wardlow, Using Energy Peaks to Count Dark Matter Particles in Decays, Phys. Dark Univ. 2 (2013) 72 [arXiv:1212.5230] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    K. Cranmer and I. Yavin, RECAST: Extending the Impact of Existing Analyses, JHEP 04 (2011) 038 [arXiv:1010.2506] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    J. Conway, PGS 4 - Pretty Good Simulation of high energy collisions,
  33. [33]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].ADSGoogle Scholar
  34. [34]
    ATLAS collaboration, Search for pair-produced top squarks decaying into a charm quark and the lightest neutralinos with 20.3 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2013-068.
  35. [35]
    A.J. Barr, B. Gripaios and C.G. Lester, Weighing Wimps with Kinks at Colliders: Invisible Particle Mass Measurements from Endpoints, JHEP 02 (2008) 014 [arXiv:0711.4008] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in nonuniversal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  38. [38]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S.Y. Choi, M. Drees, A. Freitas and P.M. Zerwas, Testing the Majorana Nature of Gluinos and Neutralinos, Phys. Rev. D 78 (2008) 095007 [arXiv:0808.2410] [INSPIRE].ADSGoogle Scholar
  40. [40]
    G.D. Kribs and A. Martin, Supersoft Supersymmetry is Super-Safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S.D.L. Amigo, A.E. Blechman, P.J. Fox and E. Poppitz, R-symmetric gauge mediation, JHEP 01 (2009) 018 [arXiv:0809.1112] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The Last Vestiges of Naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Csáki, J. Goodman, R. Pavesi and Y. Shirman, The m Db M problem of Dirac gauginos and its solutions, Phys. Rev. D 89 (2014) 055005 [arXiv:1310.4504] [INSPIRE].ADSGoogle Scholar
  45. [45]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkUnited States
  2. 2.Department of PhysicsPrinceton UniversityPrincetonUnited States

Personalised recommendations