Instability of quantum de Sitter spacetime

Open Access
Regular Article - Theoretical Physics


Quantized fields (e.g., the graviton itself) in de Sitter (dS) spacetime lead to particle production: specifically, we consider a thermal spectrum resulting from the dS (horizon) temperature. The energy required to excite these particles reduces slightly the rate of expansion and eventually modifies the semiclassical spacetime geometry. The resulting manifold no longer has constant curvature nor time reversal invariance, and backreaction renders the classical dS background unstable to perturbations. In the case of AdS, there exists a global static vacuum state; in this state there is no particle production and the analogous instability does not arise.


Models of Quantum Gravity Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P.R. Anderson and E. Mottola, Instability of global de Sitter space to particle creation, Phys. Rev. D 89 (2014) 104038 [arXiv:1310.0030] [INSPIRE].ADSGoogle Scholar
  2. [2]
    P.R. Anderson and E. Mottola, Quantum vacuum instability ofeternalde Sitter space, Phys. Rev. D 89 (2014) 104039 [arXiv:1310.1963] [INSPIRE].ADSGoogle Scholar
  3. [3]
    P.R. Anderson, W. Eaker, S. Habib, C. Molina-Paris and E. Mottola, Attractor states and infrared scaling in de Sitter space, Phys. Rev. D 62 (2000) 124019 [gr-qc/0005102] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    S. Habib, C. Molina-Paris and E. Mottola, Energy momentum tensor of particles created in an expanding universe, Phys. Rev. D 61 (2000) 024010 [gr-qc/9906120] [INSPIRE].ADSGoogle Scholar
  5. [5]
    L. Parker, Particle creation in expanding universes, Phys. Rev. Lett. 21 (1968) 562 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Parker, Quantized fields and particle creation in expanding universes. 1., Phys. Rev. 183 (1969) 1057 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    L. Parker, Quantized fields and particle creation in expanding universes. 2., Phys. Rev. D 3 (1971) 346 [INSPIRE].ADSGoogle Scholar
  8. [8]
    L. Parker, Particle creation in isotropic cosmologies, Phys. Rev. Lett. 28 (1972) 705 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Parker and S.A. Fulling, Adiabatic regularization of the energy momentum tensor of a quantized field in homogeneous spaces, Phys. Rev. D 9 (1974) 341 [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.A. Fulling and L. Parker, Renormalization in the theory of a quantized scalar field interacting with a robertson-walker spacetime, Annals Phys. 87 (1974) 176 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.A. Fulling, L. Parker and B.L. Hu, Conformal energy-momentum tensor in curved spacetime: Adiabatic regularization and renormalization, Phys. Rev. D 10 (1974) 3905 [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    L. Parker and D.J. Toms, Quantum field theory in curved spacetime: quantized fields and gravity, Cambridge University Press, Cambridge U.K. (2009).CrossRefMATHGoogle Scholar
  13. [13]
    G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  15. [15]
    P.C.W. Davies, Mining the universe, Phys. Rev. D 30 (1984) 737 [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    H. Narnhofer, I. Peter and W.E. Thirring, How hot is the de Sitter space?, Int. J. Mod. Phys. B 10 (1996) 1507 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S. Deser and O. Levin, Accelerated detectors and temperature in (anti)-de Sitter spaces, Class. Quant. Grav. 14 (1997) L163 [gr-qc/9706018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    T. Jacobson, Comment onAccelerated detectors and temperature in Anti-de Sitter spaces’, Class. Quant. Grav. 15 (1998) 251 [gr-qc/9709048] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    E.T. Akhmedov and D. Singleton, On the physical meaning of the Unruh effect, Pisma Zh. Eksp. Teor. Fiz. 86 (2007) 702 [arXiv:0705.2525] [INSPIRE].Google Scholar
  20. [20]
    T.S. Bunch and P.C.W. Davies, Quantum field theory in de Sitter space: renormalization by point splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    L.H. Ford, Quantum instability of de Sitter space-time, Phys. Rev. D 31 (1985) 710 [INSPIRE].ADSGoogle Scholar
  22. [22]
    I. Antoniadis, J. Iliopoulos and T.N. Tomaras, Quantum instability of de Sitter space, Phys. Rev. Lett. 56 (1986) 1319 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A.M. Polyakov, De Sitter space and eternity, Nucl. Phys. B 797 (2008) 199 [arXiv:0709.2899] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A.M. Polyakov, Decay of vacuum energy, Nucl. Phys. B 834 (2010) 316 [arXiv:0912.5503] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    D. Krotov and A.M. Polyakov, Infrared sensitivity of unstable vacua, Nucl. Phys. B 849 (2011) 410 [arXiv:1012.2107] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    A.M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135 [INSPIRE].
  27. [27]
    E. Greenwood, D.C. Dai and D. Stojkovic, Time dependent fluctuations and particle production in cosmological de Sitter and Anti-de Sitter spaces, Phys. Lett. B 692 (2010) 226 [arXiv:1008.0869] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Emelyanov, Freely moving observer in (quasi) Anti-de Sitter space, Phys. Rev. D 90 (2014) 044039 [arXiv:1309.3905] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R.H. Brandenberger, Back reaction of cosmological perturbations and the cosmological constant problem, hep-th/0210165 [INSPIRE].
  30. [30]
    G. Geshnizjani and R. Brandenberger, Back reaction of perturbations in two scalar field inflationary models, JCAP 04 (2005) 006 [hep-th/0310265] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Marozzi, G.P. Vacca and R.H. Brandenberger, Cosmological backreaction for a test field observer in a chaotic inflationary model, JCAP 02 (2013) 027 [arXiv:1212.6029] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Marolf and I.A. Morrison, The IR stability of de Sitter QFT: results at all orders, Phys. Rev. D 84 (2011) 044040 [arXiv:1010.5327] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyMichigan State UniversityEast LansingUnited States

Personalised recommendations