Quasinormal modes of (anti-)de Sitter black holes in the 1/D expansion

Open Access
Regular Article - Theoretical Physics

Abstract

We use the inverse-dimensional expansion to compute analytically the frequencies of a set of quasinormal modes of static black holes of Einstein-(Anti-)de Sitter gravity, including the cases of spherical, planar or hyperbolic horizons. The modes we study are decoupled modes localized in the near-horizon region, which are the ones that capture physics peculiar to each black hole (such as their instabilities), and which in large black holes contain hydrodynamic behavior. Our results also give the unstable Gregory-Laflamme frequencies of Ricci-flat black branes to two orders higher in 1/D than previous calculations. We discuss the limits on the accuracy of these results due to the asymptotic but not convergent character of the 1/D expansion, which is due to the violation of the decoupling condition at finite D. Finally, we compare the frequencies for AdS black branes to calculations in the hydrodynamic expansion in powers of the momentum k. Our results extend up to k9 for the sound mode and to k8 for the shear mode.

Keywords

Black Holes Classical Theories of Gravity Black Holes in String Theory AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    V. Asnin, D. Gorbonos, S. Hadar, et al., High and Low Dimensions in The Black Hole Negative Mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    R. Emparan, D. Grumiller and K. Tanabe, Large-D gravity and low-D strings, Phys. Rev. Lett. 110 (2013) 251102 [arXiv:1303.1995] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Emparan and K. Tanabe, Universal quasinormal modes of large D black holes, Phys. Rev. D 89 (2014) 064028 [arXiv:1401.1957] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R. Emparan, R. Suzuki and K. Tanabe, Instability of rotating black holes: large D analysis, JHEP 06 (2014) 106 [arXiv:1402.6215] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Ó.J.C. Dias, G.S. Hartnett and J.E. Santos, Quasinormal modes of asymptotically flat rotating black holes, Class. Quant. Grav. 31 (2014) 245011 [arXiv:1402.7047] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M.M. Caldarelli, J. Camps, B. Goutéraux, et al., AdS/Ricci-flat correspondence and the Gregory-Laflamme instability, Phys. Rev. D 87 (2013) 061502 [arXiv:1211.2815] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.M. Caldarelli, J. Camps, B. Goutéraux and K. Skenderis, AdS/Ricci-flat correspondence, JHEP 04 (2014) 071 [arXiv:1312.7874] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    H. Kodama and A. Ishibashi, A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701 [hep-th/0305147] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M.P. Heller, R.A. Janik and P. Witaszczyk, Hydrodynamic Gradient Expansion in Gauge Theory Plasmas, Phys. Rev. Lett. 110 (2013) 211602 [arXiv:1302.0697] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black Rings in (Anti)-deSitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter Backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Roberto Emparan
    • 1
    • 2
  • Ryotaku Suzuki
    • 3
  • Kentaro Tanabe
    • 4
  1. 1.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  2. 2.Departament de Física Fonamental, Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.Department of PhysicsOsaka City UniversityOsakaJapan
  4. 4.Theory Center, Institute of Particles and Nuclear Studies, KEKTsukubaJapan

Personalised recommendations