Bifundamental superfluids from holography

Open Access
Regular Article - Theoretical Physics


We study the holographic dual of a (2 + 1)-dimensional s-wave superfluid that breaks an abelian U(1) × U(1) global symmetry group to the diagonal U(1) V . The model is inspired by Sen’s tachyonic action, and the operator that condenses transforms in the bifundamental representation of the symmetry group. We focus on two configurations: the first one describes a marginal operator, and the phase diagram at finite temperature contains a first or a second order phase transition, depending on the parameters that determine the theory. In the second model the operator is relevant and the finite temperature transitions are always second order. In the latter case the conductivity for the current associated to the broken symmetry shows quasiparticle excitations at low temperatures, with mass given by the width of the superconducting gap. The suppression of spectral weight at low frequencies is also observed in the conductivity associated to the conserved symmetry, for which the DC value decreases as the temperature is reduced.


Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) D-branes AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    G.T. Horowitz, Introduction to holographic superconductors, Lect. Notes Phys. 828 (2011) 313 [arXiv:1002.1722] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor superconductivity from gauge/gravity duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: holographic pion superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards a holographic model of d-wave superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    A. Sen, Dirac-Born-Infeld action on the tachyon kink and vortex, Phys. Rev. D 68 (2003) 066008 [hep-th/0303057] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sens tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [INSPIRE].ADSMATHGoogle Scholar
  20. [20]
    I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II, JHEP 11 (2010) 123 [arXiv:1010.1364] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    M. Jarvinen and E. Kiritsis, Holographic models for QCD in the Veneziano limit, JHEP 03 (2012) 002 [arXiv:1112.1261] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    J. Jing and S. Chen, Holographic superconductors in the Born-Infeld electrodynamics, Phys. Lett. B 686 (2010) 68 [arXiv:1001.4227] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Gangopadhyay and D. Roychowdhury, Analytic study of properties of holographic superconductors in Born-Infeld electrodynamics, JHEP 05 (2012) 002 [arXiv:1201.6520] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Erdmenger, V. Grass, P. Kerner and T.H. Ngo, Holographic superfluidity in imbalanced mixtures, JHEP 08 (2011) 037 [arXiv:1103.4145] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    F. Bigazzi, A.L. Cotrone, D. Musso, N.P. Fokeeva and D. Seminara, Unbalanced holographic superconductors and spintronics, JHEP 02 (2012) 078 [arXiv:1111.6601] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    I. Amado, D. Arean, A. Jimenez-Alba, L. Melgar and I. Salazar Landea, Holographic s + p superconductors, Phys. Rev. D 89 (2014) 026009 [arXiv:1309.5086] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Sen, Supersymmetric world volume action for non-BPS D-branes, JHEP 10 (1999) 008 [hep-th/9909062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M.R. Garousi, Tachyon couplings on non-BPS D-branes and Dirac-Born-Infeld action, Nucl. Phys. B 584 (2000) 284 [hep-th/0003122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    E.A. Bergshoeff, M. de Roo, T.C. de Wit, E. Eyras and S. Panda, T duality and actions for non-BPS D-branes, JHEP 05 (2000) 009 [hep-th/0003221] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    S.S. Pal, Fermi-like liquid from Einstein-DBI-dilaton system, JHEP 04 (2013) 007 [arXiv:1209.3559] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    J. Tarrio, Transport properties of spacetime-filling branes, JHEP 04 (2014) 042 [arXiv:1312.2902] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].ADSMATHGoogle Scholar
  37. [37]
    N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [INSPIRE].ADSGoogle Scholar
  38. [38]
    T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  39. [39]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].ADSGoogle Scholar
  41. [41]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    D. Arean and J. Tarrio, in preparation.Google Scholar
  43. [43]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  45. [45]
    E. Mefford and G.T. Horowitz, Simple holographic insulator, Phys. Rev. D 90 (2014) 084042 [arXiv:1406.4188] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Baggioli and O. Pujolàs, Holographic polarons, the metal-insulator transition and massive gravity, arXiv:1411.1003 [INSPIRE].
  47. [47]
    A. Nata Atmaja and K. Schalm, Photon and dilepton production in soft wall AdS/QCD, JHEP 08 (2010) 124 [arXiv:0802.1460] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    P. Fulde and R.A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135 (1964) A550 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A.I. larkin and Y.N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Teor. Fiz. 47 (1964) 1136 [Sov. Phys. JETP 20 (1965) 762] [INSPIRE].
  50. [50]
    R. Combescot, Introduction to FFLO phases and collective mode in the BEC-BCS crossover, cond-mat/0702399.
  51. [51]
    T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis and K. Tuominen, On finite-temperature holographic QCD in the Veneziano limit, JHEP 01 (2013) 093 [arXiv:1210.4516] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Alho et al., A holographic model for QCD in the Veneziano limit at finite temperature and density, JHEP 04 (2014) 124 [Erratum ibid. 02 (2015) 033] [arXiv:1312.5199] [INSPIRE].
  53. [53]
    B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MunichGermany
  2. 2.Departament de Física Fonamental and Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations