Boosted event topologies from TeV scale light quark composite partners

  • Mihailo Backović
  • Thomas Flacke
  • Jeong Han Kim
  • Seung J. Lee
Open Access
Regular Article - Theoretical Physics


We propose a new search strategy for quark partners which decay into a boosted Higgs and a light quark. As an example, we consider phenomenologically viable right handed up-type quark partners of mass ∼ 1 TeV in composite pseudo-Nambu-Goldstone-boson Higgs models within the context of flavorful naturalness. Our results show that S/B > 1 and signal significance of ∼ 7σ is achievable at \( \sqrt{s}=14 \) TeV LHC with 35 fb−1 of integrated luminosity, sufficient to claim discovery of a new particle. A combination of a multi-dimensional boosted Higgs tagging technique, kinematics of pair produced heavy objects and b-tagging serves to efficiently diminish the large QCD backgrounds while maintaining adequate levels of signal efficiency. We present the analysis in the context of effective field theory, such that our results can be applied to any future search for pair produced vector-like quarks with decay modes to Higgs and a light jet.


Higgs Physics Beyond Standard Model Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [INSPIRE].ADSGoogle Scholar
  7. [7]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  13. [13]
    G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs sketch, JHEP 11 (2012) 003 [arXiv:1205.4032] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].MATHGoogle Scholar
  20. [20]
    G. Cacciapaglia and F. Sannino, Fundamental composite (Goldstone) Higgs dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    CMS collaboration, Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-B2G-12-015, CERN, Geneva Switzerland (2013).
  22. [22]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2014-036, CERN, Geneva Switzerland (2014).
  23. [23]
    J. Fan, M. Reece and J.T. Ruderman, Stealth supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1 fb at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T.J. LeCompte and S.P. Martin, Large Hadron Collider reach for supersymmetric models with compressed mass spectra, Phys. Rev. D 84 (2011) 015004 [arXiv:1105.4304] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Fan, M. Reece and J.T. Ruderman, A stealth supersymmetry sampler, JHEP 07 (2012) 196 [arXiv:1201.4875] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G.D. Kribs and A. Martin, Supersoft supersymmetry is super-safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  31. [31]
    N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.A. Evans and Y. Kats, LHC coverage of RPV MSSM with light stops, JHEP 04 (2013) 028 [arXiv:1209.0764] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    H. Dreiner, M. Krämer and J. Tattersall, Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra, Phys. Rev. D 87 (2013) 035006 [arXiv:1211.4981] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R. Mahbubani, M. Papucci, G. Perez, J.T. Ruderman and A. Weiler, Light nondegenerate squarks at the LHC, Phys. Rev. Lett. 110 (2013) 151804 [arXiv:1212.3328] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Blanke, G.F. Giudice, P. Paradisi, G. Perez and J. Zupan, Flavoured naturalness, JHEP 06 (2013) 022 [arXiv:1302.7232] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Z. Han and A. Katz, Stealth stops and spin correlation: a Snowmass white paper, arXiv:1310.0356 [INSPIRE].
  38. [38]
    G.D. Kribs and A. Martin, Dirac gauginos in supersymmetrysuppressed jets + MET signals: a Snowmass whitepaper, arXiv:1308.3468 [INSPIRE].
  39. [39]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Backović, G. Perez, T. Flacke and S.J. Lee, LHC top partner searches beyond the 2 TeV mass region, arXiv:1409.0409 [INSPIRE].
  42. [42]
    C. Delaunay et al., Light non-degenerate composite partners at the LHC, JHEP 02 (2014) 055 [arXiv:1311.2072] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    I. Galon, G. Perez and Y. Shadmi, Non-degenerate squarks from flavored gauge mediation, JHEP 09 (2013) 117 [arXiv:1306.6631] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Ultra visible warped model from flavor triviality and improved naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Extraordinary phenomenology from warped flavor triviality, Phys. Lett. B 703 (2011) 486 [arXiv:1101.2902] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Redi, V. Sanz, M. de Vries and A. Weiler, Strong signatures of right-handed compositeness, JHEP 08 (2013) 008 [arXiv:1305.3818] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    T. Flacke, J.H. Kim, S.J. Lee and S.H. Lim, Constraints on composite quark partners from Higgs searches, JHEP 05 (2014) 123 [arXiv:1312.5316] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    ATLAS collaboration, Differential cross sections of the Higgs boson measured in the diphoton decay channel using 8 TeV pp collisions, ATLAS-CONF-2013-072, CERN, Geneva Switzerland (2013).
  53. [53]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L.G. Almeida et al., Three-particle templates for a boosted Higgs boson, Phys. Rev. D 85 (2012) 114046 [arXiv:1112.1957] [INSPIRE].ADSGoogle Scholar
  55. [55]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template overlap method for massive jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Backović, J. Juknevich and G. Perez, Boosting the Standard Model Higgs signal with the template overlap method, JHEP 07 (2013) 114 [arXiv:1212.2977] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Backović, O. Gabizon, J. Juknevich, G. Perez and Y. Soreq, Measuring boosted tops in semi-leptonic \( t\overline{t} \) events for the standard model and beyond, JHEP 04 (2014) 176 [arXiv:1311.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner Hunters guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    O. Gedalia, J.F. Kamenik, Z. Ligeti and G. Perez, On the universality of CP-violation in ΔF = 1 processes, Phys. Lett. B 714 (2012) 55 [arXiv:1202.5038] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A.L. Fitzpatrick, G. Perez and L. Randall, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Csáki, G. Perez, Z. Surujon and A. Weiler, Flavor alignment via shining in RS, Phys. Rev. D 81 (2010) 075025 [arXiv:0907.0474] [INSPIRE].ADSGoogle Scholar
  64. [64]
    CMS collaboration, Search for top-quark partners with charge 5/3 in the same-sign dilepton final state, Phys. Rev. Lett. 112 (2014) 171801 [arXiv:1312.2391] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].ADSGoogle Scholar
  66. [66]
    CMS collaboration, Search for vector-like b pair production with multilepton final states in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-13-003, CERN, Geneva Switzerland (2013).
  67. [67]
    CMS collaboration, Search for pair-produced vector-like quarks of charge −1/3 in lepton+jets final state in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-12-019, CERN, Geneva Switzerland (2012).
  68. [68]
    CMS collaboration, Search for pair-produced vector-like quarks of charge −1/3 decaying to bH using boosted Higgs jet-tagging in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-14-001, CERN, Geneva Switzerland (2014).
  69. [69]
    ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state using pp collision data at \( \sqrt{s}=8 \) TeV from the ATLAS detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    ATLAS collaboration, A search for resonant Higgs-pair production in the bbbb final state in pp collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2014-005, CERN, Geneva Switzerland (2014).
  71. [71]
    CMS collaboration, Search for resonant HH production in 2γ + 2b channel, CMS-PAS-HIG-13-032, CERN, Geneva Switzerland (2013).
  72. [72]
    CMS collaboration, 2HDM scenario, Hhh and AZh, CMS-PAS-HIG-13-025, CERN, Geneva Switzerland (2013).
  73. [73]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  75. [75]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  76. [76]
    P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP 12 (2010) 068 [arXiv:1007.3300] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  77. [77]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  79. [79]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, Boosted Higgs shapes, Eur. Phys. J. C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Backović and J. Juknevich, TemplateTagger v1.0.0: a template matching tool for jet substructure, Comput. Phys. Commun. 185 (2014) 1322 [arXiv:1212.2978] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Capeans et al., ATLAS insertable B-layer technical design report, CERN-LHCC-2010-013, CERN, Geneva Switzerland (2010).

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Mihailo Backović
    • 1
  • Thomas Flacke
    • 2
  • Jeong Han Kim
    • 2
    • 3
  • Seung J. Lee
    • 2
    • 4
  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
  3. 3.Center for Theoretical Physics of the Universe, IBSDaejeonSouth Korea
  4. 4.School of PhysicsKorea Institute for Advanced StudySeoulSouth Korea

Personalised recommendations