Advertisement

Comments on the T-dual of the gravity dual of D5-branes on S3

Open Access
Regular Article - Theoretical Physics

Abstract

We consider an abelian T-duality on a deformation of the gravitational solution of [1], which is the gravity dual of Nc D5-branes wrapping a three-cycle inside a manifold that admits a G2 structure. Performing the T-duality we find Nc D4-branes wrapping a two-cycle with non-trivial antisymmetric fields in the NS-NS and RR sector. We study some aspects of its dual field theory and we compare with the original solution.

Keywords

D-branes AdS-CFT Correspondence String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena and H. Nastase, The supergravity dual of a theory with dynamical supersymmetry breaking, JHEP 09 (2001) 024 [hep-th/0105049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  3. [3]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    C. Núñez, Á. Paredes and A.V. Ramallo, Flavoring the gravity dual of \( \mathcal{N}=1 \) Yang-Mills with probes, JHEP 12 (2003) 024 [hep-th/0311201] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Casero, C. Núñez and Á. Paredes, Towards the string dual of \( \mathcal{N}=1 \) SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Núñez, Á. Paredes and A.V. Ramallo, Unquenched Flavor in the Gauge/Gravity Correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A.H. Chamseddine and M.S. Volkov, NonAbelian vacua in D = 5, N = 4 gauged supergravity, JHEP 04 (2001) 023 [hep-th/0101202] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Schvellinger and T.A. Tran, Supergravity duals of gauge field theories from SU(2) × U(1) gauged supergravity in five-dimensions, JHEP 06 (2001) 025 [hep-th/0105019] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    F. Canoura, P. Merlatti and A.V. Ramallo, The Supergravity dual of 3D supersymmetric gauge theories with unquenched flavors, JHEP 05 (2008) 011 [arXiv:0803.1475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    N.T. Macpherson, The Holographic Dual of 2 + 1 Dimensional QFTs with \( \mathcal{N}=1 \) SUSY and Massive Fundamental Flavours, JHEP 06 (2012) 136 [arXiv:1204.4222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    N.T. Macpherson, SuGra on G 2 Structure Backgrounds that Asymptote to AdS 4 and Holographic Duals of Confining 2 + 1d Gauge Theories with \( \mathcal{N}=1 \) SUSY, JHEP 04 (2013) 076 [arXiv:1301.5178] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    N.T. Macpherson, Non-Abelian T-duality, G 2 -structure rotation and holographic duals of \( \mathcal{N}=1 \) Chern-Simons theories, JHEP 11(2013) 137[arXiv:1310.1609] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    J. Gaillard and D. Martelli, Fivebranes and resolved deformed G 2 manifolds, JHEP 05 (2011) 109 [arXiv:1008.0640] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    T.H. Buscher, Path-Integral Derivation of Quantum Duality in Nonlinear Sigma-Models, Phys. Lett. B 201 (1988) 466 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    T. Ortín, Gravity and Strings, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2004).Google Scholar
  20. [20]
    E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    C. Johnson, D-Branes, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2003).Google Scholar
  22. [22]
    D. Marolf, Chern-Simons terms and the three notions of charge, in proceedings of International Conference on Quantization, Gauge Theory, and Strings: Conference Dedicated to the Memory of Professor Efim Fradkin, Moscow, Russia, 5-10 Jun 2000, C00-06-05.2 (2000), pp. 312-320. hep-th/0006117 [INSPIRE].
  23. [23]
    C. Núñez, M. Piai and A. Rago, Wilson Loops in string duals of Walking and Flavored Systems, Phys. Rev. D 81 (2010) 086001 [arXiv:0909.0748] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A.V. Smilga, Lectures on Quantum Chromodynamics, World Scientific Publishing (2001).Google Scholar
  25. [25]
    H. Nastase, Introduction to AdS-CFT, arXiv:0712.0689 [INSPIRE].
  26. [26]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    E. Caceres, N.T. Macpherson and C. Núñez, New Type IIB Backgrounds and Aspects of Their Field Theory Duals, JHEP 08 (2014) 107 [arXiv:1402.3294] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R.E. Arias and G.A. Silva, Wilson loops stability in the gauge/string correspondence, JHEP 01 (2010) 023 [arXiv:0911.0662] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    J. Sonnenschein, What does the string/gauge correspondence teach us about Wilson loops?, lectures presented at Advanced School on Supersymmetry in the Theories of Fields, Strings and Branes, Santiago de Compostela, Spain, 26-31 Jul 1999, hep-th/0003032 [INSPIRE].
  31. [31]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetMATHGoogle Scholar
  33. [33]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    U. Kol, C. Núñez, D. Schofield, J. Sonnenschein and M. Warschawski, Confinement, Phase Transitions and non-Locality in the Entanglement Entropy, JHEP 06 (2014) 005 [arXiv:1403.2721] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Lewkowycz, Holographic Entanglement Entropy and Confinement, JHEP 05 (2012) 032 [arXiv:1204.0588] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    B.S. Acharya and C. Vafa, On domain walls of N = 1 supersymmetric Yang-Mills in four-dimensions, hep-th/0103011 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Instituto de Física Teórica, UNESP-Universidade Estadual PaulistaSao PauloBrazil

Personalised recommendations