Advertisement

Identifying boosted new physics with non-isolated leptons

  • Christopher Brust
  • Petar Maksimovic
  • Alice Sady
  • Prashant Saraswat
  • Matthew T. Walters
  • Yongjie Xin
Open Access
Regular Article - Experimental Physics

Abstract

We demonstrate the utility of leptons which fail standard isolation criteria in searches for new physics at the LHC. Such leptons can arise in any event containing a highly boosted particle which decays to both leptons and quarks. We begin by considering multiple extensions to the Standard Model which primarily lead to events with non-isolated leptons and are therefore missed by current search strategies. We emphasize the failure of standard isolation variables to adequately discriminate between signal and SM background for any value of the isolation cuts. We then introduce a new approach which makes use of jet substructure techniques to distinguish a broad range of signals from QCD events. We proceed with a simulated, proof-of-principle search for R-parity violating supersymmetry to demonstrate both the experimental reach possible with the use of non-isolated leptons and the utility of new substructure variables over existing techniques.

Keywords

Jet substructure Beyond Standard Model Hadron-Hadron Scattering 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, CMS, the Compact Muon Solenoid: technical proposal, CERN-LHCC-94-38 (1994).
  2. [2]
    ATLAS collaboration, ATLAS: technical proposal for a general-purpose pp experiment at the Large Hadron Collider at CERN, CERN-LHCC-94-43 (1994).Google Scholar
  3. [3]
    CMS collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy, Phys. Rev. Lett. 109 (2012) 071803 [arXiv:1205.6615] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    ATLAS collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 06 (2014) 124 [arXiv:1403.4853] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS Collaboration, Search for pair-production of first generation scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-12-041 (2012).
  6. [6]
    ATLAS collaboration, Search for new physics in events with three charged leptons with the ATLAS detector, ATLAS-CONF-2013-070 (2013).
  7. [7]
    P.W. Graham, S. Rajendran and P. Saraswat, Supersymmetric crevices: missing signatures of R-parity violation at the LHC, Phys. Rev. D 90 (2014) 075005 [arXiv:1403.7197] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T.D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  9. [9]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V.D. Barger and W.-Y. Keung, Stoponium decays to Higgs bosons, Phys. Lett. B 211 (1988) 355 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Kumar and S.P. Martin, LHC search for di-Higgs decays of stoponium and other scalars in events with two photons and two bottom jets, Phys. Rev. D 90 (2014) 055007 [arXiv:1404.0996] [INSPIRE].ADSGoogle Scholar
  12. [12]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007 [arXiv:0810.1497] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R.S. Chivukula, B.A. Dobrescu, H. Georgi and C.T. Hill, Top quark seesaw theory of electroweak symmetry breaking, Phys. Rev. D 59 (1999) 075003 [hep-ph/9809470] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Rehermann and B. Tweedie, Efficient identification of boosted semileptonic top quarks at the LHC, JHEP 03 (2011) 059 [arXiv:1007.2221] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    CMS collaboration, Search for Z resonances decaying to \( t\overline{t} \) in dilepton+jets final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013) 072002 [arXiv:1211.3338] [INSPIRE].ADSGoogle Scholar
  23. [23]
    CMS collaboration, Search for heavy narrow t-tbar resonances in muon-plus-jets final states with the CMS detector, CMS-PAS-EXO-09-008 (2009).
  24. [24]
    ATLAS collaboration, B. Chapleau, Prospects for early top anti-top resonance searches in ATLAS, arXiv:1010.0362 [INSPIRE].
  25. [25]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in lepton+jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 015 [arXiv:1209.4397] [INSPIRE].ADSGoogle Scholar
  26. [26]
    ATLAS collaboration, Search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 4.7 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 88 (2013) 012004 [arXiv:1305.2756] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    ATLAS collaboration, Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy, Eur. Phys. J. C 71 (2011) 1763 [arXiv:1107.2092] [INSPIRE].ADSGoogle Scholar
  31. [31]
    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Krohn, M.D. Schwartz, M. Low and L.-T. Wang, Jet cleansing: pileup removal at high luminosity, Phys. Rev. D 90 (2014) 065020 [arXiv:1309.4777] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Berta, M. Spousta, D.W. Miller and R. Leitner, Particle-level pileup subtraction for jets and jet shapes, JHEP 06 (2014) 092 [arXiv:1403.3108] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Cacciari, G.P. Salam and G. Soyez, On the use of charged-track information to subtract neutral pileup, arXiv:1404.7353 [INSPIRE].
  40. [40]
    M. Cacciari, G.P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method, Eur. Phys. J. C 75 (2015) 59 [arXiv:1407.0408] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Bertolini, P. Harris, M. Low and N. Tran, Pileup per particle identification, JHEP 1410 (2014) 59 [arXiv:1407.6013] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Bertolini, T. Chan and J. Thaler, Jet observables without jet algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev. D 90 (2014) 034010 [arXiv:1406.7011] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Christopher Brust
    • 1
    • 2
    • 3
  • Petar Maksimovic
    • 1
  • Alice Sady
    • 1
  • Prashant Saraswat
    • 1
    • 2
  • Matthew T. Walters
    • 1
    • 4
  • Yongjie Xin
    • 1
  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUnited States
  2. 2.Department of PhysicsUniversity of MarylandCollege ParkUnited States
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  4. 4.Department of PhysicsBoston UniversityBostonUnited States

Personalised recommendations