New Barr-Zee contributions to (g − 2) μ in two-Higgs-doublet models

Open Access
Regular Article - Theoretical Physics

Abstract

We study the contribution of new sets of two-loop Barr-Zee type diagrams to the anomalous magnetic moment of the muon within the two-Higgs-doublet model framework. We show that some of these contributions can be quite sizeable for a large region of the parameter space and can significantly reduce, and in some cases even explain, the discrepancy between the theoretical prediction and the experimentally measured value of this observable. Analytical expressions are given for all the calculations performed in this work.

Keywords

Higgs Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].
  3. [3]
    ATLAS collaboration, Search for the bb decay of the standard model Higgs boson in associated W/ZH production with the ATLAS detector, ATLAS-CONF-2013-079 (2013).
  4. [4]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  5. [5]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  6. [6]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].
  7. [7]
    CMS Collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  8. [8]
    CDF, D0 collaboration, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].
  9. [9]
    CDF, D0 collaboration, T. Aaltonen et al., Higgs boson studies at the Tevatron, Phys. Rev. D 88 (2013) 052014 [arXiv:1303.6346] [INSPIRE].
  10. [10]
    A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting two-Higgs-doublet models, JHEP 11 (2014) 058 [arXiv:1409.3199] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Wang and X.-F. Han, A light pseudoscalar of 2HDM confronted with muon g-2 and experimental constraints, arXiv:1412.4874 [INSPIRE].
  12. [12]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Czarnecki, B. Krause and W.J. Marciano, Electroweak fermion loop contributions to the muon anomalous magnetic moment, Phys. Rev. D 52 (1995) 2619 [hep-ph/9506256] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Czarnecki, B. Krause and W.J. Marciano, Electroweak corrections to the muon anomalous magnetic moment, Phys. Rev. Lett. 76 (1996) 3267 [hep-ph/9512369] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ, Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  18. [18]
    B. Krause, Higher order hadronic contributions to the anomalous magnetic moment of leptons, Phys. Lett. B 390 (1997) 392 [hep-ph/9607259] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Prades, E. de Rafael and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment, arXiv:0901.0306 [INSPIRE].
  20. [20]
    G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersive approach to hadronic light-by-light scattering, JHEP 09 (2014) 091 [arXiv:1402.7081] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Colangelo, M. Hoferichter, B. Kubis, M. Procura and P. Stoffer, Towards a data-driven analysis of hadronic light-by-light scattering, Phys. Lett. B 738 (2014) 6 [arXiv:1408.2517] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Blum, S. Chowdhury, M. Hayakawa and T. Izubuchi, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett. 14 (2015) 012001 [arXiv:1407.2923] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    V. Pauk and M. Vanderhaeghen, Anomalous magnetic moment of the muon in a dispersive approach, Phys. Rev. D 90 (2014) 113012 [arXiv:1409.0819] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Blum et al., The muon (g − 2) theory value: present and future, arXiv:1311.2198 [INSPIRE].
  27. [27]
    K. Melnikov and A. Vainshtein, Theory of the muon anomalous magnetic moment, Springer Tracts in Modern Physics volume 216, Springer (2006).Google Scholar
  28. [28]
    M. Davier and W.J. Marciano, The theoretical prediction for the muon anomalous magnetic moment, Ann. Rev. Nucl. Part. Sci. 54 (2004) 115 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Passera, The standard model prediction of the muon anomalous magnetic moment, J. Phys. G 31 (2005) R75 [hep-ph/0411168] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Knecht, The anomalous magnetic moment of the muon: a theoretical introduction, Lect. Notes Phys. 629 (2004) 37 [hep-ph/0307239] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  32. [32]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  33. [33]
    S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].
  34. [34]
    A. Pich and P. Tuzon, Yukawa alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Dedes and H.E. Haber, Can the Higgs sector contribute significantly to the muon anomalous magnetic moment?, JHEP 05 (2001) 006 [hep-ph/0102297] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.F. Gunion, A light CP-odd Higgs boson and the muon anomalous magnetic moment, JHEP 08 (2009) 032 [arXiv:0808.2509] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two loop contributions to g − 2 from a generic pseudoscalar boson, Phys. Rev. D 63 (2001) 091301 [hep-ph/0009292] [INSPIRE].ADSGoogle Scholar
  38. [38]
    K.-m. Cheung, C.-H. Chou and O.C.W. Kong, Muon anomalous magnetic moment, two Higgs doublet model and supersymmetry, Phys. Rev. D 64 (2001) 111301 [hep-ph/0103183] [INSPIRE].
  39. [39]
    M. Krawczyk, Precision muon g − 2 results and light Higgs bosons in the 2HDM(II), Acta Phys. Polon. B 33 (2002) 2621 [hep-ph/0208076] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. Larios, G. Tavares-Velasco and C.P. Yuan, A very light CP odd scalar in the two Higgs doublet model, Phys. Rev. D 64 (2001) 055004 [hep-ph/0103292] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Cheung and O.C.W. Kong, Can the two Higgs doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Arhrib and S. Baek, Two loop Barr-Zee type contributions to (g − 2)μ in the MSSM, Phys. Rev. D 65 (2002) 075002 [hep-ph/0104225] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Heinemeyer, D. Stöckinger and G. Weiglein, Two loop SUSY corrections to the anomalous magnetic moment of the muon, Nucl. Phys. B 690 (2004) 62 [hep-ph/0312264] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    O.C.W. Kong, Higgs sector contributions to Δa μ and the constraints on two-Higgs-doublet-model with and without SUSY, hep-ph/0402010 [INSPIRE].
  45. [45]
    K. Cheung, O.C.W. Kong and J.S. Lee, Electric and anomalous magnetic dipole moments of the muon in the MSSM, JHEP 06 (2009) 020 [arXiv:0904.4352] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L. Bian, T. Liu and J. Shu, Post-ACME2013 CP-violation in Higgs physics and electroweak baryogenesis, arXiv:1411.6695 [INSPIRE].
  47. [47]
    A. Celis, V. Ilisie and A. Pich, Towards a general analysis of LHC data within two-Higgs-doublet models, JHEP 12 (2013) 095 [arXiv:1310.7941] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    V. Ilisie and A. Pich, Low-mass fermiophobic charged Higgs phenomenology in two-Higgs-doublet models, JHEP 09 (2014) 089 [arXiv:1405.6639] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    V. Ilisie, Bounds on neutral and charged Higgs from the LHC, arXiv:1410.5164 [INSPIRE].
  51. [51]
    V. Ilisie, Constraining the two-Higgs doublet models with the LHC data, PoS(EPS-HEP (2013) 286 [arXiv:1310.0931] [INSPIRE].
  52. [52]
    M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    M. Jung, A. Pich and P. Tuzon, The BXsγ rate and CP asymmetry within the aligned Two-Higgs-Doublet Model, Phys. Rev. D 83 (2011) 074011 [arXiv:1011.5154] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD (*) τν τ and Bτν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Jung and A. Pich, Electric dipole moments in Two-Higgs-Doublet Models, JHEP 04 (2014) 076 [arXiv:1308.6283] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    X.-Q. Li, J. Lu and A. Pich, B s,d0 →  + decays in the aligned Two-Higgs-Doublet Model, JHEP 06 (2014) 022 [arXiv:1404.5865] [INSPIRE].ADSGoogle Scholar
  57. [57]
    H.E. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Krawczyk and J. Zochowski, Constraining 2HDM by present and future muon (g − 2) data, Phys. Rev. D 55 (1997) 6968 [hep-ph/9608321] [INSPIRE].ADSGoogle Scholar
  60. [60]
    F.S. Queiroz and W. Shepherd, New physics contributions to the muon anomalous magnetic moment: a numerical code, Phys. Rev. D 89 (2014) 095024 [arXiv:1403.2309] [INSPIRE].ADSGoogle Scholar
  61. [61]
    C.-H. Chen and C.Q. Geng, The muon anomalous magnetic moment from a generic charged Higgs with SUSY, Phys. Lett. B 511 (2001) 77 [hep-ph/0104151] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [arXiv:1311.4704] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    OPAL collaboration, G. Abbiendi et al., Decay mode independent searches for new scalar bosons with the OPAL detector at LEP, Eur. Phys. J. C 27 (2003) 311 [hep-ex/0206022] [INSPIRE].
  64. [64]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].
  65. [65]
    R. Santos and A. Barroso, On the renormalization of two Higgs doublet models, Phys. Rev. D 56 (1997) 5366 [hep-ph/9701257] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Malinsky and J. Horejsi, Triple gauge vertices at one loop level in THDM, Eur. Phys. J. C 34 (2004) 477 [hep-ph/0308247] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.IFIC, Universitat de València — CSICValènciaSpain

Personalised recommendations