The LPM effect in sequential bremsstrahlung

Open Access
Regular Article - Theoretical Physics

Abstract

The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. We analyze the case when the coherence lengths of two consecutive splitting processes overlap, which is important for understanding corrections to standard treatments of the LPM effect in QCD. Previous authors have analyzed this problem in the case of overlapping double bremsstrahlung where at least one of the bremsstrahlung gluons is soft. Here we show how to generalize to include the case where both splittings are hard. A number of techniques must be developed, and so in this paper we simplify by (i) restricting attention to a subset of the interference effects, which we call the “crossed” diagrams, and (ii) working in the large-Nc limit. We first develop some general formulas that could in principle be implemented numerically (with substantial difficulty). To make more analytic progress, we then focus on the case of a thick, homogeneous medium and make the multiple scattering approximation (also known as the \( \widehat{q} \) or harmonic approximation) appropriate at high energy. We show that the differential rate dΓ/dx dy for overlapping double bremsstrahlung of gluons with momentum fractions x and y can then be reduced to the calculation of a 1-dimensional integral, which we perform numerically.

Keywords

Quark-Gluon Plasma QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.D. Landau and I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 535 [INSPIRE].MATHGoogle Scholar
  2. [2]
    L.D. Landau and I. Pomeranchuk, Electron cascade process at very high energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 735 [INSPIRE].Google Scholar
  3. [3]
    L. Landau, The collected papers of L.D. Landau, Pergamon Press, New York U.S.A. (1965).Google Scholar
  4. [4]
    A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103 (1956) 1811 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, The Landau-Pomeranchuk-Migdal effect in QED, Nucl. Phys. B 478 (1996) 577 [hep-ph/9604327] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.-P. Blaizot and Y. Mehtar-Tani, Renormalization of the jet-quenching parameter, Nucl. Phys. A 929 (2014) 202 [arXiv:1403.2323] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Iancu, The non-linear evolution of jet quenching, JHEP 1410 (2014) 95 [arXiv:1403.1996] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. Wu, Radiative energy loss and radiative p -broadening of high-energy partons in QCD matter, JHEP 12 (2014) 081 [arXiv:1408.5459] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K.C. Zapp, J. Stachel and U.A. Wiedemann, A local Monte Carlo framework for coherent QCD parton energy loss, JHEP 07 (2011) 118 [arXiv:1103.6252] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Medium induced radiative energy loss: equivalence between the BDMPS and Zakharov formalisms, Nucl. Phys. B 531 (1998) 403 [hep-ph/9804212] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Liou, A.H. Mueller and B. Wu, Radiative p -broadening of high-energy quarks and gluons in QCD matter, Nucl. Phys. A 916 (2013) 102 [arXiv:1304.7677] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E. Iancu and D.N. Triantafyllopoulos, Running coupling effects in the evolution of jet quenching, Phys. Rev. D 90 (2014) 074002 [arXiv:1405.3525] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P.B. Arnold, Simple formula for high-energy gluon bremsstrahlung in a finite, expanding medium, Phys. Rev. D 79 (2009) 065025 [arXiv:0808.2767] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Gyulassy, P. Levai and I. Vitev, Non-Abelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-Abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].ADSGoogle Scholar
  23. [23]
    N. Armesto, C.A. Salgado and U.A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003 [hep-ph/0312106] [INSPIRE].ADSGoogle Scholar
  24. [24]
    X.-N. Wang and X.-F. Guo, Multiple parton scattering in nuclei: parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Majumder, Hard collinear gluon radiation and multiple scattering in a medium, Phys. Rev. D 85 (2012) 014023 [arXiv:0912.2987] [INSPIRE].ADSGoogle Scholar
  26. [26]
    N. Armesto et al., Comparison of jet quenching formalisms for a quark-gluon plasmabrick’, Phys. Rev. C 86 (2012) 064904 [arXiv:1106.1106] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Kurkela and U.A. Wiedemann, Picturing perturbative parton cascades in QCD matter, Phys. Lett. B 740 (2015) 172 [arXiv:1407.0293] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Aurenche and B.G. Zakharov, Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma, JETP Lett. 90 (2009) 237 [arXiv:0907.1918] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  30. [30]
    B.G. Zakharov, Radiative parton energy loss and jet quenching in high-energy heavy-ion collisions, JETP Lett. 80 (2004) 617 [Pisma Zh. Eksp. Teor. Fiz. 80 (2004) 721] [hep-ph/0410321] [INSPIRE].
  31. [31]
    P. Aurenche and B.G. Zakharov, Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma, JETP Lett. 90 (2009) 237 [arXiv:0907.1918] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Caron-Huot and C. Gale, Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter, Phys. Rev. C 82 (2010) 064902 [arXiv:1006.2379] [INSPIRE].ADSGoogle Scholar
  33. [33]
    G. Altarelli, Partons in quantum chromodynamics, Phys. Rept. 81 (1982) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K.G. Wilson, Non-Lagrangian models of current algebra, Phys. Rev. 179 (1969) 1499 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    P.B. Arnold and C. Dogan, QCD splitting/joining functions at finite temperature in the deep LPM regime, Phys. Rev. D 78 (2008) 065008 [arXiv:0804.3359] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P.B. Arnold, S. Cantrell and W. Xiao, Stopping distance for high energy jets in weakly-coupled quark-gluon plasmas, Phys. Rev. D 81 (2010) 045017 [arXiv:0912.3862] [INSPIRE].ADSGoogle Scholar
  37. [37]
    B.G. Zakharov, On the energy loss of high-energy quarks in a finite size quark-gluon plasma, JETP Lett. 73 (2001) 49 [Pisma Zh. Eksp. Teor. Fiz. 73 (2001) 55] [hep-ph/0012360] [INSPIRE].
  38. [38]
    P.B. Arnold, High-energy gluon bremsstrahlung in a finite medium: harmonic oscillator versus single scattering approximation, Phys. Rev. D 80 (2009) 025004 [arXiv:0903.1081] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Peigne and A.V. Smilga, Energy losses in a hot plasma revisited, Phys. Usp. 52 (2009) 659 [Usp. Fiz. Nauk 179 (2009) 697] [arXiv:0810.5702] [INSPIRE].
  40. [40]
    F. D’Eramo, M. Lekaveckas, H. Liu and K. Rajagopal, Momentum broadening in weakly coupled quark-gluon plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma), JHEP 05 (2013) 031 [arXiv:1211.1922] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleUnited States
  2. 2.National Centre for PhysicsQuaid-i-Azam University CampusIslamabadPakistan

Personalised recommendations