A bottom-up approach to lepton flavor and CP symmetries

  • Lisa L. Everett
  • Todd Garon
  • Alexander J. Stuart
Open Access
Regular Article - Theoretical Physics


We perform a model-independent analysis of the possible residual Klein and generalized CP symmetries associated with arbitrary lepton mixing angles in the case that there are three light Majorana neutrino species. This approach emphasizes the unique role of the Majorana phases and provides a useful framework in which to discuss the origin of the Dirac CP phase in scenarios with spontaneously broken flavor and generalized CP symmetries. The method is shown to reproduce known examples in the literature based on tribimaximal and bitrimaximal mixing patterns, and is used to investigate these issues for the case of a particular (GR1) golden ratio mixing pattern.


Neutrino Physics CP violation Discrete and Finite Symmetries Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid. 02 (2015) 074] [arXiv:1406.7763] [INSPIRE].
  4. [4]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].Google Scholar
  5. [5]
    F. Capozzi et al., Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Holthausen, M. Lindner and M.A. Schmidt, CP and discrete flavour symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    G.-J. Ding, S.F. King and A.J. Stuart, Generalised CP and A 4 family symmetry, JHEP 12 (2013) 006 [arXiv:1307.4212] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G.-J. Ding and Y.-L. Zhou, Lepton mixing parameters from Δ(48) family symmetry and generalised CP, JHEP 06 (2014) 023 [arXiv:1404.0592] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Hagedorn, A. Meroni and E. Molinaro, Lepton mixing from Δ(3n 2) and Δ(6n 2) and CP, Nucl. Phys. B 891 (2015) 499 [arXiv:1408.7118] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton mixing parameters from discrete and CP symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, Spontaneous CP-violation from vacuum alignment in S 4 models of leptons, JHEP 05 (2013) 084 [arXiv:1303.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Feruglio, C. Hagedorn and R. Ziegler, A realistic pattern of lepton mixing and masses from S 4 and CP, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C.-C. Li and G.-J. Ding, Generalised CP and trimaximal TM 1 lepton mixing in S 4 family symmetry, Nucl. Phys. B 881 (2014) 206 [arXiv:1312.4401] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    C.-C. Li and G.-J. Ding, Deviation from bimaximal mixing and leptonic CP phases in S 4 family symmetry and generalized CP, arXiv:1408.0785 [INSPIRE].
  17. [17]
    S.F. King and T. Neder, Lepton mixing predictions including Majorana phases from Δ(6n 2) flavour symmetry and generalised CP, Phys. Lett. B 736 (2014) 308 [arXiv:1403.1758] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    G.-J. Ding and S.F. King, Generalized CP and Δ(96) family symmetry, Phys. Rev. D 89 (2014) 093020 [arXiv:1403.5846] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G.-J. Ding, S.F. King and T. Neder, Generalised CP and Δ(6n 2) family symmetry in semi-direct models of leptons, JHEP 12 (2014) 007 [arXiv:1409.8005] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Hagedorn, A. Meroni and L. Vitale, Mixing patterns from the groups Σ(), J. Phys. A 47 (2014) 055201 [arXiv:1307.5308] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  21. [21]
    I. Girardi, A. Meroni, S.T. Petcov and M. Spinrath, Generalised geometrical CP-violation in a Tlepton flavour model, JHEP 02(2014) 050 [arXiv:1312.1966][INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Z 2 symmetry prediction for the leptonic Dirac CP phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Residual symmetries for neutrino mixing with a large θ 13 and nearly maximal δ D , Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C. Luhn, Trimaximal TM 1 neutrino mixing in S 4 with spontaneous CP-violation, Nucl. Phys. B 875 (2013) 80 [arXiv:1306.2358] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    A.D. Hanlon, S.-F. Ge and W.W. Repko, Phenomenological consequences of residual Z 2s and \( {\overline{Z}}_2^s \) symmetries, Phys. Lett. B 729(2014) 185 [arXiv:1308.6522] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K.M. Parattu and A. Wingerter, Tribimaximal mixing from small groups, Phys. Rev. D 84 (2011) 013011 [arXiv:1012.2842] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.S. Lam, Finite symmetry of leptonic mass matrices, Phys. Rev. D 87 (2013) 013001 [arXiv:1208.5527] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Holthausen, K.S. Lim and M. Lindner, Lepton mixing patterns from a scan of finite discrete groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R.M. Fonseca and W. Grimus, Classification of lepton mixing matrices from finite residual symmetries, JHEP 09 (2014) 033 [arXiv:1405.3678] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Talbert, [Re]constructing finite flavour groups: horizontal symmetry scans from the bottom-up, JHEP 12 (2014) 058 [arXiv:1409.7310] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Datta, F.-S. Ling and P. Ramond, Correlated hierarchy, Dirac masses and large mixing angles, Nucl. Phys. B 671 (2003) 383 [hep-ph/0306002] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Kajiyama, M. Raidal and A. Strumia, The golden ratio prediction for the solar neutrino mixing, Phys. Rev. D 76 (2007) 117301 [arXiv:0705.4559] [INSPIRE].ADSGoogle Scholar
  34. [34]
    L.L. Everett and A.J. Stuart, Icosahedral (A 5 ) family symmetry and the golden ratio prediction for solar neutrino mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [INSPIRE].ADSGoogle Scholar
  35. [35]
    F. Feruglio and A. Paris, The golden ratio prediction for the solar angle from a natural model with A 5 flavour symmetry, JHEP 03 (2011) 101 [arXiv:1101.0393] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    G.-J. Ding, L.L. Everett and A.J. Stuart, Golden ratio neutrino mixing and A 5 flavor symmetry, Nucl. Phys. B 857 (2012) 219 [arXiv:1110.1688] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.M. Bilenky, J. Hosek and S.T. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, CP violation in Majorana neutrinos, Phys. Lett. B 102 (1981) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G.C. Branco, L. Lavoura and M.N. Rebelo, Majorana neutrinos and CP violation in the leptonic sector, Phys. Lett. B 180 (1986) 264 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.F. Nieves and P.B. Pal, Minimal rephasing invariant CP violating parameters with Dirac and Majorana fermions, Phys. Rev. D 36 (1987) 315 [INSPIRE].ADSGoogle Scholar
  44. [44]
    F. del Aguila and M. Zralek, CP violation in the lepton sector with Majorana neutrinos, Nucl. Phys. B 447 (1995) 211 [hep-ph/9504228] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    F. del Aguila, J.A. Aguilar-Saavedra and M. Zralek, Invariant analysis of CP-violation, Comput. Phys. Commun. 100 (1997) 231 [hep-ph/9607311] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, Degenerate and quasidegenerate Majorana neutrinos, Phys. Rev. Lett. 82 (1999) 683 [hep-ph/9810328] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.A. Aguilar-Saavedra and G.C. Branco, Unitarity triangles and geometrical description of CP-violation with Majorana neutrinos, Phys. Rev. D 62 (2000) 096009 [hep-ph/0007025] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.F. Nieves and P.B. Pal, Rephasing invariant CP-violating parameters with Majorana neutrinos, Phys. Rev. D 64 (2001) 076005 [hep-ph/0105305] [INSPIRE].ADSGoogle Scholar
  49. [49]
    G.C. Branco and M.N. Rebelo, Leptonic CP-violation and neutrino mass models, New J. Phys. 7 (2005) 86 [hep-ph/0411196] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Y. Farzan and A.Y. Smirnov, Leptonic CP-violation: zero, maximal or between the two extremes, JHEP 01 (2007) 059 [hep-ph/0610337] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    H.K. Dreiner, J.S. Kim, O. Lebedev and M. Thormeier, Supersymmetric Jarlskog invariants: the neutrino sector, Phys. Rev. D 76 (2007) 015006 [hep-ph/0703074] [INSPIRE].ADSGoogle Scholar
  52. [52]
    E.E. Jenkins and A.V. Manohar, Rephasing invariants of quark and lepton mixing matrices, Nucl. Phys. B 792 (2008) 187 [arXiv:0706.4313] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    E.E. Jenkins and A.V. Manohar, Algebraic structure of lepton and quark flavor invariants and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    G.C. Branco, R.G. Felipe and F.R. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P. Chen, C.-C. Li and G.-J. Ding, Lepton flavor mixing and CP symmetry, Phys. Rev. D 91 (2015) 033003 [arXiv:1412.8352] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S. Antusch, S.F. King and M. Malinsky, Third family corrections to tri-bimaximal lepton mixing and a new sum rule, Phys. Lett. B 671 (2009) 263 [arXiv:0711.4727] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Antusch, S.F. King and M. Malinsky, Third family corrections to quark and lepton mixing in SUSY models with non-Abelian family symmetry, JHEP 05 (2008) 066 [arXiv:0712.3759] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Boudjemaa and S.F. King, Deviations from tri-bimaximal mixing: charged lepton corrections and renormalization group running, Phys. Rev. D 79 (2009) 033001 [arXiv:0808.2782] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. Antusch, S.F. King and M. Malinsky, Perturbative estimates of lepton mixing angles in unified models, Nucl. Phys. B 820 (2009) 32 [arXiv:0810.3863] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  60. [60]
    J.A. Casas, J.R. Espinosa, A. Ibarra and I. Navarro, General RG equations for physical neutrino parameters and their phenomenological implications, Nucl. Phys. B 573 (2000) 652 [hep-ph/9910420] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    P.H. Chankowski and S. Pokorski, Quantum corrections to neutrino masses and mixing angles, Int. J. Mod. Phys. A 17 (2002) 575 [hep-ph/0110249] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  62. [62]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S.F. King and I.N.R. Peddie, Canonical normalization and Yukawa matrices, Phys. Lett. B 586 (2004) 83 [hep-ph/0312237] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.T. Petcov, Predicting the values of the leptonic CP-violation phases in theories with discrete flavour symmetries, Nucl. Phys. B 892 (2015) 400 [arXiv:1405.6006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing solar lepton mixing sum rules in neutrino oscillation experiments, JHEP 12 (2014) 122 [arXiv:1410.7573] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    I. Girardi, S.T. Petcov and A.V. Titov, Determining the Dirac CP-violation phase in the neutrino mixing matrix from sum rules, arXiv:1410.8056 [INSPIRE].
  67. [67]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    Z.-Z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].ADSGoogle Scholar
  70. [70]
    X.G. He and A. Zee, Some simple mixing and mass matrices for neutrinos, Phys. Lett. B 560 (2003) 87 [hep-ph/0301092] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete flavour symmetries in light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G.-J. Ding, TFH mixing patterns, large θ 13 and Δ(96) flavor symmetry, Nucl. Phys. B 862 (2012) 1 [arXiv:1201.3279] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  73. [73]
    S.F. King, C. Luhn and A.J. Stuart, A grand Δ(96) × SU(5) flavour model, Nucl. Phys. B 867 (2013) 203 [arXiv:1207.5741] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Lisa L. Everett
    • 1
    • 2
  • Todd Garon
    • 1
  • Alexander J. Stuart
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of WisconsinMadisonUnited States
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoUnited States
  3. 3.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom

Personalised recommendations