Towards a holographic Bose-Hubbard model

  • Mitsutoshi Fujita
  • Sarah M. Harrison
  • Andreas Karch
  • René Meyer
  • Natalie M. Paquette
Open Access
Regular Article - Theoretical Physics


We present a holographic construction of the large-N Bose-Hubbard model. The model is based on Maxwell fields coupled to charged scalar fields on the AdS2 hard wall. We realize the lobe-shaped phase structure of the Bose-Hubbard model and find that the model admits Mott insulator ground states in the limit of large Coulomb repulsion. In the Mott insulator phases, the bosons are localized on each site. At zero hopping we find that the transitions between Mott insulating phases with different fillings correspond to first order level-crossing phase transitions. At finite hopping we find a holographic phase transition between the Mott phase and a non-homogeneous phase. We then analyze the perturbations of fields around both the Mott insulator phase and inhomogeneous phase. We find almost zero modes in the non-homogeneous phase.


Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    R.C. Myers, S. Sachdev and A. Singh, Holographic Quantum Critical Transport without Self-Duality, Phys. Rev. D 83 (2011) 066017 [arXiv:1010.0443] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S.A. Hartnoll, P.K. Kovtun, M. Müller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007)144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Karch and A. Katz, Adding flavor to AdS/CFT, Fortsch. Phys. 51 (2003) 759 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415 (2002) 39.ADSCrossRefGoogle Scholar
  19. [19]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    A. Sen, State Operator Correspondence and Entanglement in AdS 2 /CFT 1, Entropy 13 (2011) 1305 [arXiv:1101.4254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Kachru, A. Karch and S. Yaida, Holographic Lattices, Dimers and Glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    S. Kachru, A. Karch and S. Yaida, Adventures in Holographic Dimer Models, New J. Phys. 13 (2011) 035004 [arXiv:1009.3268] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic Description of AdS 2 Black Holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP 03 (2013) 108 [arXiv:1212.0871] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    N. Iizuka et al., Bianchi Attractors: A Classification of Extremal Black Brane Geometries, JHEP 07 (2012) 193 [arXiv:1201.4861] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    N. Iizuka et al., Extremal Horizons with Reduced Symmetry: Hyperscaling Violation, Stripes and a Classification for the Homogeneous Case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].MathSciNetMATHGoogle Scholar
  35. [35]
    G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.P.A. Fisher, P.B. Weichman, G. Grinstein and D.S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B 40 (1989) 546 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    M. Fujita, Y. Hikida, S. Ryu and T. Takayanagi, Disordered Systems and the Replica Method in AdS/CFT, JHEP 12 (2008) 065 [arXiv:0810.5394] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    J.M. Camino, A. Paredes and A.V. Ramallo, Stable wrapped branes, JHEP 05 (2001) 011 [hep-th/0104082] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S.A. Hartnoll, Two universal results for Wilson loops at strong coupling, Phys. Rev. D 74 (2006) 066006 [hep-th/0606178] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    N. Bao, S. Harrison, S. Kachru and S. Sachdev, Vortex Lattices and Crystalline Geometries, Phys. Rev. D 88 (2013) 026002 [arXiv:1303.4390] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Mas, J.P. Shock, J. Tarrio and D. Zoakos, Holographic Spectral Functions at Finite Baryon Density, JHEP 09 (2008) 009 [arXiv:0805.2601] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    T. Faulkner and J. Polchinski, Semi-Holographic Fermi Liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    K. Jensen, S. Kachru, A. Karch, J. Polchinski and E. Silverstein, Towards a holographic marginal Fermi liquid, Phys. Rev. D 84 (2011) 126002 [arXiv:1105.1772] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Erdmenger, C. Hoyos, A. O’Bannon and J. Wu, A Holographic Model of the Kondo Effect, JHEP 12 (2013) 086 [arXiv:1310.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  54. [54]
    G.T. Horowitz and B. Way, Complete Phase Diagrams for a Holographic Superconductor/Insulator System, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d+1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    A. Lucas, S. Sachdev and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev. D 89 (2014) 066018 [arXiv:1401.7993] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S.A. Hartnoll and J.E. Santos, Disordered horizons: Holography of randomly disordered fixed points, Phys. Rev. Lett. 112 (2014) 231601 [arXiv:1402.0872] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S.A. Hartnoll and J.E. Santos, Cold planar horizons are floppy, Phys. Rev. D 89 (2014) 126002 [arXiv:1403.4612] [INSPIRE].ADSGoogle Scholar
  60. [60]
    D. Arean, A. Farahi, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, Holographic superconductor with disorder, Phys. Rev. D 89 (2014) 106003 [arXiv:1308.1920] [INSPIRE].ADSGoogle Scholar
  61. [61]
    D. Arean, A. Farahi, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, Holographic p-wave Superconductor with Disorder, arXiv:1407.7526 [INSPIRE].
  62. [62]
    E. Arias, G. Krein, G. Menezes and N.F. Svaiter, Thermodynamics of a charged scalar field in disordered media, arXiv:1210.2444 [INSPIRE].
  63. [63]
    G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator Transition by Holographic Charge Density Waves, Phys. Rev. Lett. 113 (2014) 091602 [arXiv:1404.0777] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    E. Pomoni and L. Rastelli, Large-N Field Theory and AdS Tachyons, JHEP 04 (2009) 020 [arXiv:0805.2261] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    E. Pomoni and L. Rastelli, Intersecting Flavor Branes, JHEP 10 (2012) 171 [arXiv:1002.0006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality Lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].ADSMATHGoogle Scholar
  68. [68]
    D. Kutasov, J. Lin and A. Parnachev, Conformal Phase Transitions at Weak and Strong Coupling, Nucl. Phys. B 858 (2012) 155 [arXiv:1107.2324] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Fujita, S. Harrison, A. Karch, R. Meyer and N.M. Paquette, work in progress.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Mitsutoshi Fujita
    • 1
  • Sarah M. Harrison
    • 2
  • Andreas Karch
    • 3
  • René Meyer
    • 4
  • Natalie M. Paquette
    • 5
  1. 1.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  2. 2.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeUnited States
  3. 3.Department of PhysicsUniversity of WashingtonSeattleUnited States
  4. 4.Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced StudyUniversity of TokyoKashiwaJapan
  5. 5.SITP, Department of Physics and Theory GroupSLAC, Stanford UniversityStanfordUnited States

Personalised recommendations