Floating JMaRT

Open Access
Regular Article - Theoretical Physics


We define a new partially solvable system of equations that parametrises solutions to six-dimensional \( \mathcal{N}=\left(1,\ 0\right) \) ungauged supergravity coupled to tensor multiplets. We obtain this system by applying a series of dualities on the known floating brane system, imposing that it allows for the JMaRT solution. We construct an explicit multi-centre solution generalising the JMaRT solution, with an arbitrary number of additional BPS centres on a line. We describe explicitly the embedding of the JMaRT solution in this system in five dimensions.


Black Holes in String Theory Supergravity Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.D. Mathur, The Quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115 [hep-th/0510180] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S.D. Mathur, The Fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructinghairfor the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006)066001 [hep-th/0505166] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An infinite-dimensional family of black-hole microstate geometries, JHEP 03 (2011) 022 [Erratum ibid. 04 (2011) 059] [arXiv:1006.3497] [INSPIRE].
  9. [9]
    O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries, Nucl. Phys. B 868 (2013) 383 [arXiv:1208.1770] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    N. Bobev, B. Niehoff and N.P. Warner, Hair in the Back of a Throat: non-Supersymmetric Multi-Center Solutions from Káhler Manifolds, JHEP 10 (2011) 149 [arXiv:1103.0520] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    B.E. Niehoff, Non-supersymmetric, multi-center solutions with topological flux, JHEP 10 (2014) 168 [arXiv:1308.6335] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [INSPIRE].ADSGoogle Scholar
  13. [13]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, A (running) bolt for new reasons, JHEP 11 (2009) 089 [arXiv:0909.2559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    N. Bobev and C. Ruef, The nuts and bolts of Einstein-Maxwell solutions, JHEP 01 (2010) 124 [arXiv:0912.0010] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S. Giusto, S.F. Ross and A. Saxena, Non-supersymmetric microstates of the D1-D5-KK system, JHEP 12 (2007) 065 [arXiv:0708.3845] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    G. Compere, K. Copsey, S. de Buyl and R.B. Mann, Solitons in five dimensional minimal supergravity: local charge, exotic ergoregions and violations of the BPS bound, JHEP 12 (2009) 047 [arXiv:0909.3289] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Banerjee, B.D. Chowdhury, B. Vercnocke and A. Virmani, Non-supersymmetric microstates of the MSW system, JHEP 05 (2014) 011 [arXiv:1402.4212] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity solutions from floating branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    G. Bossard and S. Katmadas, A bubbling bolt, JHEP 07 (2014) 118 [arXiv:1405.4325] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs, Class. Quant. Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    E.G. Gimon, T.S. Levi and S.F. Ross, Geometry of non-supersymmetric three-charge bound states, JHEP 08 (2007) 055 [arXiv:0705.1238] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    M. Günaydin, H. Samtleben and E. Sezgin, On the magical supergravities in six dimensions, Nucl. Phys. B 848 (2011) 62 [arXiv:1012.1818] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Günaydin, G. Sierra and P.K. Townsend, The geometry of N = 2 Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379 [hep-th/9505038] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575 (2000) 211 [hep-th/9909102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    G. Bossard, Octonionic black holes, JHEP 05 (2012) 113 [arXiv:1203.0530] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D. Katsimpouri, A. Kleinschmidt and A. Virmani, An Inverse Scattering Construction of the JMaRT Fuzzball, JHEP 12 (2014) 070 [arXiv:1409.6471] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Centre de Physique Théorique, Ecole Polytechnique, CNRSPalaiseauFrance
  2. 2.Dipartimento di FisicaUniversità di Milano-Bicocca and INFN, sezione di Milano-BicoccaMilanoItaly

Personalised recommendations