# Nonthermal two component dark matter model for Fermi-LAT *γ*-ray excess and 3.55 keV X-ray line

- 235 Downloads
- 23 Citations

## Abstract

A two component model of nonthermal dark matter is formulated to simultaneously explain the Fermi-LAT results indicating a *γ*-ray excess observed from our Galactic Centre in the 1–3 GeV energy range and the detection of an X-ray line at 3.55 keV from extragalactic sources. Two additional Standard Model singlet scalar fields *S*_{2} and *S*_{3} are introduced. These fields couple among themselves and with the Standard Model Higgs doublet *H*. The interaction terms among the scalar fields, namely *H*, *S*_{2} and *S*_{3}, are constrained by the application of a discrete ℤ_{2} × ℤ _{2} ^{′} symmetry which breaks softly to a remnant ℤ _{2} ^{′ ′} symmetry. This residual discrete symmetry is then spontaneously broken through an MeV order vacuum expectation value *u* of the singlet scalar field *S*_{3}. The resultant physical scalar spectrum has the Standard Model like Higgs as *χ*_{1} with \( {M}_{\chi_1}\sim 125 \) GeV, a moderately heavy scalar *χ*_{2} with 50 GeV ≤ \( {M}_{\chi_2}\le 80 \) GeV and a light *χ*_{3} with \( {M}_{\chi_3}\sim 7 \) keV. There is only tiny mixing between *χ*_{1} and *χ*_{2} as well as between *χ*_{1} and *χ*_{3}. The lack of importance of domain wall formation in the present scenario from the spontaneous breaking of the discrete symmetry ℤ _{2} ^{′ ′} , provided *u* ≤ 10 MeV, is pointed out. We find that our proposed two component dark matter model is able to explain successfully both the above mentioned phenomena — the Fermi-LAT observed *γ*-ray excess (from the \( {\chi}_2\to \mathrm{b}\overline{\mathrm{b}} \) decay mode) and the observation of the X-ray line (from the decay channel *χ*_{3} → *γγ*) by the XMM-Newton observatory.

### Keywords

Cosmology of Theories beyond the SM Beyond Standard Model## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

### References

- [1]G. Bertone, D. Hooper and J. Silk,
*Particle dark matter: evidence, candidates and constraints*,*Phys. Rept.***405**(2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar - [2]Planck collaboration, P.A.R. Ade et al.,
*Planck 2013 results. XVI. Cosmological parameters*,*Astron. Astrophys.***571**(2014) A16 [arXiv:1303.5076] [INSPIRE].CrossRefGoogle Scholar - [3]E. Bulbul et al.,
*Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters*,*Astrophys. J.***789**(2014) 13 [arXiv:1402.2301] [INSPIRE].ADSCrossRefGoogle Scholar - [4]A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse,
*Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster*,*Phys. Rev. Lett.***113**(2014) 251301 [arXiv:1402.4119] [INSPIRE].ADSCrossRefGoogle Scholar - [5]L. Goodenough and D. Hooper,
*Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope*, arXiv:0910.2998 [INSPIRE]. - [6]D. Hooper and L. Goodenough,
*Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope*,*Phys. Lett.***B 697**(2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar - [7]A. Boyarsky, D. Malyshev and O. Ruchayskiy,
*A comment on the emission from the Galactic Center as seen by the Fermi telescope*,*Phys. Lett.***B 705**(2011) 165 [arXiv:1012.5839] [INSPIRE].ADSCrossRefGoogle Scholar - [8]D. Hooper and T. Linden,
*On The Origin Of The Gamma Rays From The Galactic Center*,*Phys. Rev.***D 84**(2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar - [9]K.N. Abazajian and M. Kaplinghat,
*Detection of a Gamma-Ray Source in the Galactic Center Consistent with Extended Emission from Dark Matter Annihilation and Concentrated Astrophysical Emission*,*Phys. Rev.***D 86**(2012) 083511 [*Erratum ibid.***D 87**(2013) 129902] [arXiv:1207.6047] [INSPIRE]. - [10]D. Hooper and T.R. Slatyer,
*Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter*,*Phys. Dark Univ.***2**(2013) 118 [arXiv:1302.6589] [INSPIRE].CrossRefGoogle Scholar - [11]K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat,
*Astrophysical and Dark Matter Interpretations of Extended Gamma-Ray Emission from the Galactic Center*,*Phys. Rev.***D 90**(2014) 023526 [arXiv:1402.4090] [INSPIRE].ADSGoogle Scholar - [12]T. Daylan et al.,
*The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter*, arXiv:1402.6703 [INSPIRE]. - [13]P. Agrawal, B. Batell, P.J. Fox and R. Harnik,
*WIMPs at the Galactic Center*, arXiv:1411.2592 [INSPIRE]. - [14]F. Calore, I. Cholis, C. McCabe and C. Weniger,
*A Tale of Tails: Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics*,*Phys. Rev.***D 91**(2015) 063003 [arXiv:1411.4647] [INSPIRE].ADSGoogle Scholar - [15]T.E. Jeltema and S. Profumo,
*Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line*, arXiv:1408.1699 [INSPIRE]. - [16]E. Carlson, T. Jeltema and S. Profumo,
*Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus*,*JCAP***02**(2015) 009 [arXiv:1411.1758] [INSPIRE].ADSCrossRefGoogle Scholar - [17]D. Malyshev, A. Neronov and D. Eckert,
*Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies*,*Phys. Rev.***D 90**(2014) 103506 [arXiv:1408.3531] [INSPIRE].ADSGoogle Scholar - [18]M.E. Anderson, E. Churazov and J.N. Bregman,
*Non-Detection of X-Ray Emission From Sterile Neutrinos in Stacked Galaxy Spectra*, arXiv:1408.4115 [INSPIRE]. - [19]J. Petrovic, P.D. Serpico and G. Zaharijas,
*Galactic Center gamma-ray*“*excess*”*from an active past of the Galactic Centre?*,*JCAP***10**(2014) 052 [arXiv:1405.7928] [INSPIRE].ADSCrossRefGoogle Scholar - [20]J. Petrović, P.D. Serpico and G. Zaharijas,
*Millisecond pulsars and the Galactic Center gamma-ray excess: the importance of luminosity function and secondary emission*,*JCAP***02**(2015) 023 [arXiv:1411.2980] [INSPIRE].ADSCrossRefGoogle Scholar - [21]M.S. Boucenna and S. Profumo,
*Direct and Indirect Singlet Scalar Dark Matter Detection in the Lepton-Specific two-Higgs-doublet Model*,*Phys. Rev.***D 84**(2011) 055011 [arXiv:1106.3368] [INSPIRE].ADSGoogle Scholar - [22]J.D. Ruiz-Alvarez, C.A. de S. Pires, F.S. Queiroz, D. Restrepo and P.S. Rodrigues da Silva,
*On the Connection of Gamma-Rays, Dark Matter and Higgs Searches at LHC*,*Phys. Rev.***D 86**(2012) 075011 [arXiv:1206.5779] [INSPIRE]. - [23]A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd,
*Effective field theory approach to the Galactic Center gamma-ray excess*,*Phys. Rev.***D 90**(2014) 115003 [arXiv:1403.5027] [INSPIRE].ADSGoogle Scholar - [24]A. Berlin, D. Hooper and S.D. McDermott,
*Simplified Dark Matter Models for the Galactic Center Gamma-Ray Excess*,*Phys. Rev.***D 89**(2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar - [25]P. Agrawal, B. Batell, D. Hooper and T. Lin,
*Flavored Dark Matter and the Galactic Center Gamma-Ray Excess*,*Phys. Rev.***D 90**(2014) 063512 [arXiv:1404.1373] [INSPIRE].ADSGoogle Scholar - [26]E. Izaguirre, G. Krnjaic and B. Shuve,
*The Galactic Center Excess from the Bottom Up*,*Phys. Rev.***D 90**(2014) 055002 [arXiv:1404.2018] [INSPIRE].ADSGoogle Scholar - [27]D.G. Cerdeño, M. Peiró and S. Robles,
*Low-mass right-handed sneutrino dark matter: SuperCDMS and LUX constraints and the Galactic Centre gamma-ray excess*,*JCAP***08**(2014) 005 [arXiv:1404.2572] [INSPIRE].ADSCrossRefGoogle Scholar - [28]S. Ipek, D. McKeen and A.E. Nelson,
*A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation*,*Phys. Rev.***D 90**(2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar - [29]C. Boehm, M.J. Dolan and C. McCabe,
*A weighty interpretation of the Galactic Centre excess*,*Phys. Rev.***D 90**(2014) 023531 [arXiv:1404.4977] [INSPIRE].ADSGoogle Scholar - [30]P. Ko, W.-I. Park and Y. Tang,
*Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center*,*JCAP***09**(2014) 013 [arXiv:1404.5257] [INSPIRE].ADSCrossRefGoogle Scholar - [31]M. Abdullah et al.,
*Hidden on-shell mediators for the Galactic Center γ-ray excess*,*Phys. Rev.***D 90**(2014) 035004 [arXiv:1404.6528] [INSPIRE].ADSGoogle Scholar - [32]D.K. Ghosh, S. Mondal and I. Saha,
*Confronting the Galactic Center Gamma Ray Excess With a Light Scalar Dark Matter*,*JCAP***02**(2015) 035 [arXiv:1405.0206] [INSPIRE].ADSCrossRefGoogle Scholar - [33]A. Martin, J. Shelton and J. Unwin,
*Fitting the Galactic Center Gamma-Ray Excess with Cascade Annihilations*,*Phys. Rev.***D 90**(2014) 103513 [arXiv:1405.0272] [INSPIRE].ADSGoogle Scholar - [34]L. Wang and X.-F. Han,
*A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess*,*Phys. Lett.***B 739**(2014) 416 [arXiv:1406.3598] [INSPIRE].ADSCrossRefGoogle Scholar - [35]T. Basak and T. Mondal,
*Class of Higgs-portal Dark Matter models in the light of gamma-ray excess from Galactic center*,*Phys. Lett.***B 744**(2015) 208 [arXiv:1405.4877] [INSPIRE].ADSGoogle Scholar - [36]W. Detmold, M. McCullough and A. Pochinsky,
*Dark Nuclei I: Cosmology and Indirect Detection*,*Phys. Rev.***D 90**(2014) 115013 [arXiv:1406.2276] [INSPIRE].ADSGoogle Scholar - [37]C. Arina, E. Del Nobile and P. Panci,
*Dark Matter with Pseudoscalar-Mediated Interactions Explains the DAMA Signal and the Galactic Center Excess*,*Phys. Rev. Lett.***114**(2015) 011301 [arXiv:1406.5542] [INSPIRE].ADSCrossRefGoogle Scholar - [38]N. Okada and O. Seto,
*Galactic Center gamma-ray excess from two-Higgs-doublet-portal dark matter*,*Phys. Rev.***D 90**(2014) 083523 [arXiv:1408.2583] [INSPIRE].ADSGoogle Scholar - [39]K. Ghorbani,
*Fermionic dark matter with pseudo-scalar Yukawa interaction*,*JCAP***01**(2015) 015 [arXiv:1408.4929] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [40]A.D. Banik and D. Majumdar,
*Low Energy Gamma Ray Excess Confronting a Singlet Scalar Extended Inert Doublet Dark Matter Model*,*Phys. Lett.***B 743**(2015) 420 [arXiv:1408.5795] [INSPIRE].ADSCrossRefGoogle Scholar - [41]A. Biswas,
*Explaining Low Energy γ-ray Excess from the Galactic Centre using a Two Component Dark Matter Model*, arXiv:1412.1663 [INSPIRE]. - [42]K. Ghorbani and H. Ghorbani,
*Scalar Split WIMPs and Galactic Gamma-Ray Excess*, arXiv:1501.00206 [INSPIRE]. - [43]D.G. Cerdeno, M. Peiro and S. Robles,
*Fits to the Fermi-LAT GeV excess with RH sneutrino dark matter: implications for direct and indirect dark matter searches and the LHC*, arXiv:1501.01296 [INSPIRE]. - [44]R. Krall, M. Reece and T. Roxlo,
*Effective field theory and keV lines from dark matter*,*JCAP***09**(2014) 007 [arXiv:1403.1240] [INSPIRE].ADSCrossRefGoogle Scholar - [45]J.-C. Park, S.C. Park and K. Kong,
*X-ray line signal from 7 keV axino dark matter decay*,*Phys. Lett.***B 733**(2014) 217 [arXiv:1403.1536] [INSPIRE].ADSCrossRefGoogle Scholar - [46]M.T. Frandsen, F. Sannino, I.M. Shoemaker and O. Svendsen,
*X-ray Lines from Dark Matter: The Good, The Bad and The Unlikely*,*JCAP***05**(2014) 033 [arXiv:1403.1570] [INSPIRE].ADSCrossRefGoogle Scholar - [47]S. Baek and H. Okada,
*7 keV Dark Matter as X-ray Line Signal in Radiative Neutrino Model*, arXiv:1403.1710 [INSPIRE]. - [48]K. Nakayama, F. Takahashi and T.T. Yanagida,
*The 3.5 keV X-ray line signal from decaying moduli with low cutoff scale*,*Phys. Lett.***B 735**(2014) 338 [arXiv:1403.1733] [INSPIRE].ADSCrossRefGoogle Scholar - [49]K.-Y. Choi and O. Seto,
*X-ray line signal from decaying axino warm dark matter*,*Phys. Lett.***B 735**(2014) 92 [arXiv:1403.1782] [INSPIRE].ADSCrossRefGoogle Scholar - [50]M. Cicoli, J.P. Conlon, M.C.D. Marsh and M. Rummel,
*3.55 keV photon line and its morphology from a 3.55 keV axionlike particle line*,*Phys. Rev.***D 90**(2014) 023540 [arXiv:1403.2370] [INSPIRE].ADSGoogle Scholar - [51]C. Kolda and J. Unwin,
*X-ray lines from R-parity violating decays of keV sparticles*,*Phys. Rev.***D 90**(2014) 023535 [arXiv:1403.5580] [INSPIRE].ADSGoogle Scholar - [52]R. Allahverdi, B. Dutta and Y. Gao,
*keV Photon Emission from Light Nonthermal Dark Matter*,*Phys. Rev.***D 89**(2014) 127305 [arXiv:1403.5717] [INSPIRE].ADSGoogle Scholar - [53]N.E. Bomark and L. Roszkowski,
*3.5 keV x-ray line from decaying gravitino dark matter*,*Phys. Rev.***D 90**(2014) 011701 [arXiv:1403.6503] [INSPIRE].ADSGoogle Scholar - [54]S.P. Liew,
*Axino dark matter in light of an anomalous X-ray line*,*JCAP***05**(2014) 044 [arXiv:1403.6621] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [55]K. Nakayama, F. Takahashi and T.T. Yanagida,
*Anomaly-free flavor models for Nambu-Goldstone bosons and the 3.5 keV X-ray line signal*,*Phys. Lett.***B 734**(2014) 178 [arXiv:1403.7390] [INSPIRE].ADSCrossRefGoogle Scholar - [56]E. Dudas, L. Heurtier and Y. Mambrini,
*Generating X-ray lines from annihilating dark matter*,*Phys. Rev.***D 90**(2014) 035002 [arXiv:1404.1927] [INSPIRE].ADSGoogle Scholar - [57]K.S. Babu and R.N. Mohapatra,
*7 keV Scalar Dark Matter and the Anomalous Galactic X-ray Spectrum*,*Phys. Rev.***D 89**(2014) 115011 [arXiv:1404.2220] [INSPIRE].ADSGoogle Scholar - [58]K.P. Modak,
*3.5 keV X-ray Line Signal from Decay of Right-Handed Neutrino due to Transition Magnetic Moment*,*JHEP***03**(2015) 064 [arXiv:1404.3676] [INSPIRE].ADSCrossRefGoogle Scholar - [59]S. Baek, P. Ko and W.-I. Park,
*The 3.5 keV X-ray line signature from annihilating and decaying dark matter in Weinberg model*, arXiv:1405.3730 [INSPIRE]. - [60]S. Chakraborty, D.K. Ghosh and S. Roy,
*7 keV Sterile neutrino dark matter in*U(1)_{R}−*lepton number model*,*JHEP***10**(2014) 146 [arXiv:1405.6967] [INSPIRE].ADSCrossRefGoogle Scholar - [61]C.-W. Chiang and T. Yamada,
*3.5 keV X-ray line from nearly-degenerate WIMP dark matter decays*,*JHEP***09**(2014) 006 [arXiv:1407.0460] [INSPIRE].ADSCrossRefGoogle Scholar - [62]B. Dutta, I. Gogoladze, R. Khalid and Q. Shafi,
*3.5 keV X-ray line and R-Parity Conserving Supersymmetry*,*JHEP***11**(2014) 018 [arXiv:1407.0863] [INSPIRE].ADSCrossRefGoogle Scholar - [63]N. Haba, H. Ishida and R. Takahashi,
*ν*_{R}*dark matter-philic Higgs for 3.5 keV X-ray signal*,*Phys. Lett.***B 743**(2015) 35 [arXiv:1407.6827] [INSPIRE].ADSCrossRefGoogle Scholar - [64]J.M. Cline and A.R. Frey,
*Nonabelian dark matter models for 3.5 keV X-rays*,*JCAP***10**(2014) 013 [arXiv:1408.0233] [INSPIRE].ADSCrossRefGoogle Scholar - [65]Y. Farzan and A.R. Akbarieh,
*Decaying Vector Dark Matter as an Explanation for the 3.5 keV Line from Galaxy Clusters*,*JCAP***11**(2014) 015 [arXiv:1408.2950] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [66]T. Higaki, N. Kitajima and F. Takahashi,
*Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line*,*JCAP***12**(2014) 004 [arXiv:1408.3936] [INSPIRE].ADSCrossRefGoogle Scholar - [67]S. Patra, N. Sahoo and N. Sahu,
*Dipolar dark matter in light of 3.5 keV X-ray Line, Neutrino mass and LUX data*, arXiv:1412.4253 [INSPIRE]. - [68]K.S. Babu, S. Chakdar and R.N. Mohapatra,
*Warm Dark Matter in Two Higgs Doublet Models*, arXiv:1412.7745 [INSPIRE]. - [69]K. Cheung, W.-C. Huang and Y.-L.S. Tsai,
*Non-abelian Dark Matter Solutions for Galactic Gamma-ray Excess and Perseus 3.5 keV X-ray Line*, arXiv:1411.2619 [INSPIRE]. - [70]
- [71]D. Feldman, Z. Liu, P. Nath and G. Peim,
*Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions*,*Phys. Rev.***D 81**(2010) 095017 [arXiv:1004.0649] [INSPIRE].ADSGoogle Scholar - [72]A. Biswas, D. Majumdar, A. Sil and P. Bhattacharjee,
*Two Component Dark Matter: A Possible Explanation of 130 GeV γ*−*Ray Line from the Galactic Centre*,*JCAP***12**(2013) 049 [arXiv:1301.3668] [INSPIRE].ADSCrossRefGoogle Scholar - [73]S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka,
*Two-Component Dark Matter*,*JHEP***10**(2013) 158 [arXiv:1309.2986] [INSPIRE].ADSCrossRefGoogle Scholar - [74]L. Bian, T. Li, J. Shu and X.-C. Wang,
*Two component dark matter with multi-Higgs portals*,*JHEP***03**(2015) 126 [arXiv:1412.5443] [INSPIRE].CrossRefGoogle Scholar - [75]J.F. Navarro, C.S. Frenk and S.D.M. White,
*A Universal density profile from hierarchical clustering*,*Astrophys. J.***490**(1997) 493 [astro-ph/9611107] [INSPIRE].ADSCrossRefGoogle Scholar - [76]XENON100 collaboration, E. Aprile et al.,
*Dark Matter Results from 225 Live Days of XENON100 Data*,*Phys. Rev. Lett.***109**(2012) 181301 [arXiv:1207.5988] [INSPIRE].CrossRefGoogle Scholar - [77]LUX collaboration, D.S. Akerib et al.,
*First results from the LUX dark matter experiment at the Sanford Underground Research Facility*,*Phys. Rev. Lett.***112**(2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar - [78]K. Kannike,
*Vacuum Stability Conditions From Copositivity Criteria*,*Eur. Phys. J.***C 72**(2012) 2093 [arXiv:1205.3781] [INSPIRE].ADSCrossRefGoogle Scholar - [79]J. Edsjo and P. Gondolo,
*Neutralino relic density including coannihilations*,*Phys. Rev.***D 56**(1997) 1879 [hep-ph/9704361] [INSPIRE].ADSGoogle Scholar - [80]A. Biswas and D. Majumdar,
*The Real Gauge Singlet Scalar Extension of Standard Model: A Possible Candidate of Cold Dark Matter*,*Pramana***80**(2013) 539 [arXiv:1102.3024] [INSPIRE].ADSCrossRefGoogle Scholar - [81]L. Dolan and R. Jackiw,
*Symmetry Behavior at Finite Temperature*,*Phys. Rev.***D 9**(1974) 3320 [INSPIRE].ADSGoogle Scholar - [82]R. Barbieri, L.J. Hall and V.S. Rychkov,
*Improved naturalness with a heavy Higgs: An Alternative road to LHC physics*,*Phys. Rev.***D 74**(2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar - [83]M. Cirelli et al.,
*PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection*,*JCAP***03**(2011) 051 [*Erratum ibid.***1210**(2012) E01] [arXiv:1012.4515] [INSPIRE].