Nonthermal two component dark matter model for Fermi-LAT γ-ray excess and 3.55 keV X-ray line

  • Anirban Biswas
  • Debasish Majumdar
  • Probir Roy
Open Access
Regular Article - Theoretical Physics


A two component model of nonthermal dark matter is formulated to simultaneously explain the Fermi-LAT results indicating a γ-ray excess observed from our Galactic Centre in the 1–3 GeV energy range and the detection of an X-ray line at 3.55 keV from extragalactic sources. Two additional Standard Model singlet scalar fields S2 and S3 are introduced. These fields couple among themselves and with the Standard Model Higgs doublet H. The interaction terms among the scalar fields, namely H, S2 and S3, are constrained by the application of a discrete ℤ2 × ℤ 2 symmetry which breaks softly to a remnant ℤ 2 ′ ′ symmetry. This residual discrete symmetry is then spontaneously broken through an MeV order vacuum expectation value u of the singlet scalar field S3. The resultant physical scalar spectrum has the Standard Model like Higgs as χ1 with \( {M}_{\chi_1}\sim 125 \) GeV, a moderately heavy scalar χ2 with 50 GeV ≤ \( {M}_{\chi_2}\le 80 \) GeV and a light χ3 with \( {M}_{\chi_3}\sim 7 \) keV. There is only tiny mixing between χ1 and χ2 as well as between χ1 and χ3. The lack of importance of domain wall formation in the present scenario from the spontaneous breaking of the discrete symmetry ℤ 2 ′ ′ , provided u ≤ 10 MeV, is pointed out. We find that our proposed two component dark matter model is able to explain successfully both the above mentioned phenomena — the Fermi-LAT observed γ-ray excess (from the \( {\chi}_2\to \mathrm{b}\overline{\mathrm{b}} \) decay mode) and the observation of the X-ray line (from the decay channel χ3γγ) by the XMM-Newton observatory.


Cosmology of Theories beyond the SM Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    E. Bulbul et al., Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Astrophys. J. 789 (2014) 13 [arXiv:1402.2301] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster, Phys. Rev. Lett. 113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. Goodenough and D. Hooper, Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope, arXiv:0910.2998 [INSPIRE].
  6. [6]
    D. Hooper and L. Goodenough, Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Boyarsky, D. Malyshev and O. Ruchayskiy, A comment on the emission from the Galactic Center as seen by the Fermi telescope, Phys. Lett. B 705 (2011) 165 [arXiv:1012.5839] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Hooper and T. Linden, On The Origin Of The Gamma Rays From The Galactic Center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar
  9. [9]
    K.N. Abazajian and M. Kaplinghat, Detection of a Gamma-Ray Source in the Galactic Center Consistent with Extended Emission from Dark Matter Annihilation and Concentrated Astrophysical Emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].
  10. [10]
    D. Hooper and T.R. Slatyer, Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter, Phys. Dark Univ. 2 (2013) 118 [arXiv:1302.6589] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat, Astrophysical and Dark Matter Interpretations of Extended Gamma-Ray Emission from the Galactic Center, Phys. Rev. D 90 (2014) 023526 [arXiv:1402.4090] [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Daylan et al., The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter, arXiv:1402.6703 [INSPIRE].
  13. [13]
    P. Agrawal, B. Batell, P.J. Fox and R. Harnik, WIMPs at the Galactic Center, arXiv:1411.2592 [INSPIRE].
  14. [14]
    F. Calore, I. Cholis, C. McCabe and C. Weniger, A Tale of Tails: Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics, Phys. Rev. D 91 (2015) 063003 [arXiv:1411.4647] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T.E. Jeltema and S. Profumo, Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line, arXiv:1408.1699 [INSPIRE].
  16. [16]
    E. Carlson, T. Jeltema and S. Profumo, Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus, JCAP 02 (2015) 009 [arXiv:1411.1758] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Malyshev, A. Neronov and D. Eckert, Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies, Phys. Rev. D 90 (2014) 103506 [arXiv:1408.3531] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M.E. Anderson, E. Churazov and J.N. Bregman, Non-Detection of X-Ray Emission From Sterile Neutrinos in Stacked Galaxy Spectra, arXiv:1408.4115 [INSPIRE].
  19. [19]
    J. Petrovic, P.D. Serpico and G. Zaharijas, Galactic Center gamma-rayexcessfrom an active past of the Galactic Centre?, JCAP 10 (2014) 052 [arXiv:1405.7928] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Petrović, P.D. Serpico and G. Zaharijas, Millisecond pulsars and the Galactic Center gamma-ray excess: the importance of luminosity function and secondary emission, JCAP 02 (2015) 023 [arXiv:1411.2980] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.S. Boucenna and S. Profumo, Direct and Indirect Singlet Scalar Dark Matter Detection in the Lepton-Specific two-Higgs-doublet Model, Phys. Rev. D 84 (2011) 055011 [arXiv:1106.3368] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J.D. Ruiz-Alvarez, C.A. de S. Pires, F.S. Queiroz, D. Restrepo and P.S. Rodrigues da Silva, On the Connection of Gamma-Rays, Dark Matter and Higgs Searches at LHC, Phys. Rev. D 86 (2012) 075011 [arXiv:1206.5779] [INSPIRE].
  23. [23]
    A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd, Effective field theory approach to the Galactic Center gamma-ray excess, Phys. Rev. D 90 (2014) 115003 [arXiv:1403.5027] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Berlin, D. Hooper and S.D. McDermott, Simplified Dark Matter Models for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Agrawal, B. Batell, D. Hooper and T. Lin, Flavored Dark Matter and the Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 063512 [arXiv:1404.1373] [INSPIRE].ADSGoogle Scholar
  26. [26]
    E. Izaguirre, G. Krnjaic and B. Shuve, The Galactic Center Excess from the Bottom Up, Phys. Rev. D 90 (2014) 055002 [arXiv:1404.2018] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.G. Cerdeño, M. Peiró and S. Robles, Low-mass right-handed sneutrino dark matter: SuperCDMS and LUX constraints and the Galactic Centre gamma-ray excess, JCAP 08 (2014) 005 [arXiv:1404.2572] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Ipek, D. McKeen and A.E. Nelson, A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. Boehm, M.J. Dolan and C. McCabe, A weighty interpretation of the Galactic Centre excess, Phys. Rev. D 90 (2014) 023531 [arXiv:1404.4977] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP 09 (2014) 013 [arXiv:1404.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Abdullah et al., Hidden on-shell mediators for the Galactic Center γ-ray excess, Phys. Rev. D 90 (2014) 035004 [arXiv:1404.6528] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D.K. Ghosh, S. Mondal and I. Saha, Confronting the Galactic Center Gamma Ray Excess With a Light Scalar Dark Matter, JCAP 02 (2015) 035 [arXiv:1405.0206] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Martin, J. Shelton and J. Unwin, Fitting the Galactic Center Gamma-Ray Excess with Cascade Annihilations, Phys. Rev. D 90 (2014) 103513 [arXiv:1405.0272] [INSPIRE].ADSGoogle Scholar
  34. [34]
    L. Wang and X.-F. Han, A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess, Phys. Lett. B 739 (2014) 416 [arXiv:1406.3598] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Basak and T. Mondal, Class of Higgs-portal Dark Matter models in the light of gamma-ray excess from Galactic center, Phys. Lett. B 744 (2015) 208 [arXiv:1405.4877] [INSPIRE].ADSGoogle Scholar
  36. [36]
    W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].ADSGoogle Scholar
  37. [37]
    C. Arina, E. Del Nobile and P. Panci, Dark Matter with Pseudoscalar-Mediated Interactions Explains the DAMA Signal and the Galactic Center Excess, Phys. Rev. Lett. 114 (2015) 011301 [arXiv:1406.5542] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    N. Okada and O. Seto, Galactic Center gamma-ray excess from two-Higgs-doublet-portal dark matter, Phys. Rev. D 90 (2014) 083523 [arXiv:1408.2583] [INSPIRE].ADSGoogle Scholar
  39. [39]
    K. Ghorbani, Fermionic dark matter with pseudo-scalar Yukawa interaction, JCAP 01 (2015) 015 [arXiv:1408.4929] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A.D. Banik and D. Majumdar, Low Energy Gamma Ray Excess Confronting a Singlet Scalar Extended Inert Doublet Dark Matter Model, Phys. Lett. B 743 (2015) 420 [arXiv:1408.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Biswas, Explaining Low Energy γ-ray Excess from the Galactic Centre using a Two Component Dark Matter Model, arXiv:1412.1663 [INSPIRE].
  42. [42]
    K. Ghorbani and H. Ghorbani, Scalar Split WIMPs and Galactic Gamma-Ray Excess, arXiv:1501.00206 [INSPIRE].
  43. [43]
    D.G. Cerdeno, M. Peiro and S. Robles, Fits to the Fermi-LAT GeV excess with RH sneutrino dark matter: implications for direct and indirect dark matter searches and the LHC, arXiv:1501.01296 [INSPIRE].
  44. [44]
    R. Krall, M. Reece and T. Roxlo, Effective field theory and keV lines from dark matter, JCAP 09 (2014) 007 [arXiv:1403.1240] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.-C. Park, S.C. Park and K. Kong, X-ray line signal from 7 keV axino dark matter decay, Phys. Lett. B 733 (2014) 217 [arXiv:1403.1536] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.T. Frandsen, F. Sannino, I.M. Shoemaker and O. Svendsen, X-ray Lines from Dark Matter: The Good, The Bad and The Unlikely, JCAP 05 (2014) 033 [arXiv:1403.1570] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Baek and H. Okada, 7 keV Dark Matter as X-ray Line Signal in Radiative Neutrino Model, arXiv:1403.1710 [INSPIRE].
  48. [48]
    K. Nakayama, F. Takahashi and T.T. Yanagida, The 3.5 keV X-ray line signal from decaying moduli with low cutoff scale, Phys. Lett. B 735 (2014) 338 [arXiv:1403.1733] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    K.-Y. Choi and O. Seto, X-ray line signal from decaying axino warm dark matter, Phys. Lett. B 735 (2014) 92 [arXiv:1403.1782] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Cicoli, J.P. Conlon, M.C.D. Marsh and M. Rummel, 3.55 keV photon line and its morphology from a 3.55 keV axionlike particle line, Phys. Rev. D 90 (2014) 023540 [arXiv:1403.2370] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C. Kolda and J. Unwin, X-ray lines from R-parity violating decays of keV sparticles, Phys. Rev. D 90 (2014) 023535 [arXiv:1403.5580] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R. Allahverdi, B. Dutta and Y. Gao, keV Photon Emission from Light Nonthermal Dark Matter, Phys. Rev. D 89 (2014) 127305 [arXiv:1403.5717] [INSPIRE].ADSGoogle Scholar
  53. [53]
    N.E. Bomark and L. Roszkowski, 3.5 keV x-ray line from decaying gravitino dark matter, Phys. Rev. D 90 (2014) 011701 [arXiv:1403.6503] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S.P. Liew, Axino dark matter in light of an anomalous X-ray line, JCAP 05 (2014) 044 [arXiv:1403.6621] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Anomaly-free flavor models for Nambu-Goldstone bosons and the 3.5 keV X-ray line signal, Phys. Lett. B 734 (2014) 178 [arXiv:1403.7390] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. Dudas, L. Heurtier and Y. Mambrini, Generating X-ray lines from annihilating dark matter, Phys. Rev. D 90 (2014) 035002 [arXiv:1404.1927] [INSPIRE].ADSGoogle Scholar
  57. [57]
    K.S. Babu and R.N. Mohapatra, 7 keV Scalar Dark Matter and the Anomalous Galactic X-ray Spectrum, Phys. Rev. D 89 (2014) 115011 [arXiv:1404.2220] [INSPIRE].ADSGoogle Scholar
  58. [58]
    K.P. Modak, 3.5 keV X-ray Line Signal from Decay of Right-Handed Neutrino due to Transition Magnetic Moment, JHEP 03 (2015) 064 [arXiv:1404.3676] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Baek, P. Ko and W.-I. Park, The 3.5 keV X-ray line signature from annihilating and decaying dark matter in Weinberg model, arXiv:1405.3730 [INSPIRE].
  60. [60]
    S. Chakraborty, D.K. Ghosh and S. Roy, 7 keV Sterile neutrino dark matter in U(1)Rlepton number model, JHEP 10 (2014) 146 [arXiv:1405.6967] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    C.-W. Chiang and T. Yamada, 3.5 keV X-ray line from nearly-degenerate WIMP dark matter decays, JHEP 09 (2014) 006 [arXiv:1407.0460] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    B. Dutta, I. Gogoladze, R. Khalid and Q. Shafi, 3.5 keV X-ray line and R-Parity Conserving Supersymmetry, JHEP 11 (2014) 018 [arXiv:1407.0863] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    N. Haba, H. Ishida and R. Takahashi, ν R dark matter-philic Higgs for 3.5 keV X-ray signal, Phys. Lett. B 743 (2015) 35 [arXiv:1407.6827] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.M. Cline and A.R. Frey, Nonabelian dark matter models for 3.5 keV X-rays, JCAP 10 (2014) 013 [arXiv:1408.0233] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    Y. Farzan and A.R. Akbarieh, Decaying Vector Dark Matter as an Explanation for the 3.5 keV Line from Galaxy Clusters, JCAP 11 (2014) 015 [arXiv:1408.2950] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    T. Higaki, N. Kitajima and F. Takahashi, Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line, JCAP 12 (2014) 004 [arXiv:1408.3936] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Patra, N. Sahoo and N. Sahu, Dipolar dark matter in light of 3.5 keV X-ray Line, Neutrino mass and LUX data, arXiv:1412.4253 [INSPIRE].
  68. [68]
    K.S. Babu, S. Chakdar and R.N. Mohapatra, Warm Dark Matter in Two Higgs Doublet Models, arXiv:1412.7745 [INSPIRE].
  69. [69]
    K. Cheung, W.-C. Huang and Y.-L.S. Tsai, Non-abelian Dark Matter Solutions for Galactic Gamma-ray Excess and Perseus 3.5 keV X-ray Line, arXiv:1411.2619 [INSPIRE].
  70. [70]
    Q.-H. Cao, E. Ma, J. Wudka and C.-P. Yuan, Multipartite dark matter, arXiv:0711.3881 [INSPIRE].
  71. [71]
    D. Feldman, Z. Liu, P. Nath and G. Peim, Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions, Phys. Rev. D 81 (2010) 095017 [arXiv:1004.0649] [INSPIRE].ADSGoogle Scholar
  72. [72]
    A. Biswas, D. Majumdar, A. Sil and P. Bhattacharjee, Two Component Dark Matter: A Possible Explanation of 130 GeV γRay Line from the Galactic Centre, JCAP 12 (2013) 049 [arXiv:1301.3668] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-Component Dark Matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    L. Bian, T. Li, J. Shu and X.-C. Wang, Two component dark matter with multi-Higgs portals, JHEP 03 (2015) 126 [arXiv:1412.5443] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].CrossRefGoogle Scholar
  77. [77]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur. Phys. J. C 72 (2012) 2093 [arXiv:1205.3781] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].ADSGoogle Scholar
  80. [80]
    A. Biswas and D. Majumdar, The Real Gauge Singlet Scalar Extension of Standard Model: A Possible Candidate of Cold Dark Matter, Pramana 80 (2013) 539 [arXiv:1102.3024] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].ADSGoogle Scholar
  82. [82]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Anirban Biswas
    • 1
  • Debasish Majumdar
    • 1
  • Probir Roy
    • 2
    • 3
  1. 1.Astroparticle Physics and Cosmology DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Saha Institute of Nuclear PhysicsKolkataIndia
  3. 3.Centre for Astroparticle Physics and Space scienceBose InstituteKolkataIndia

Personalised recommendations