\( \mathcal{N}=2 \) dilaton-Weyl multiplets in 5D and Nishino-Rajpoot supergravity off-shell

Open Access
Regular Article - Theoretical Physics
  • 276 Downloads

Abstract

We describe in detail the derivation of a superconformal off-shell formulation of the alternative \( \mathcal{N}=2 \), d = 5 ungauged supergravity of Nishino and Rajpoot, coupled to n Abelian vector multiplets, using a general dilaton-Weyl multiplet. We generalize the vector multiplet coupling available in the literature and show under which assumptions that the scalar manifold reduces to the known case of SO(1, 1) × SO(1, n)/SO(n). As an application of the formalism we propose generalized vector multiplet coupled higher curvature terms, whose construction we sketch briefly.

Keywords

Supergravity Models Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Cremmer, Supergravities in 5 dimensions, in Superspace and supergravity: proceedings of the Nuffield Workshop, Cambridge, U.K., June 16-July 12 1980, S.W. Hawking and M. Rocek eds., Cambridge University Press, (1981) [INSPIRE].
  2. [2]
    A.H. Chamseddine and H. Nicolai, Coupling the SO(2) Supergravity Through Dimensional Reduction, Phys. Lett. B 96 (1980) 89 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    R. D’Auria, E. Maina, T. Regge and P. Fré, Geometrical First Order Supergravity in Five Space-time Dimensions, Annals Phys. 135 (1981) 237 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    M. Günaydin, G. Sierra and P.K. Townsend, Vanishing Potentials in Gauged N = 2 Supergravity: An Application of Jordan Algebras, Phys. Lett. B 144 (1984) 41 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    M. Günaydin, G. Sierra and P.K. Townsend, Exceptional Supergravity Theories and the MAGIC Square, Phys. Lett. B 133 (1983) 72 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    M. Günaydin, G. Sierra and P.K. Townsend, The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    M. Günaydin, G. Sierra and P.K. Townsend, Gauging the D = 5 Maxwell-Einstein Supergravity Theories: More on Jordan Algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    G. Sierra, N = 2 Maxwell matter Einstein Supergravities in D = 5, D = 4 and D = 3, Phys. Lett. B 157 (1985) 379 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The Universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in five-dimensions, Nucl. Phys. B 552 (1999) 246 [hep-th/9806051] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  11. [11]
    M. Günaydin and M. Zagermann, The Gauging of five-dimensional, N = 2 Maxwell-Einstein supergravity theories coupled to tensor multiplets, Nucl. Phys. B 572 (2000) 131 [hep-th/9912027] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  12. [12]
    M. Günaydin and M. Zagermann, The Vacua of 5-D, N = 2 gauged Yang-Mills/Einstein tensor supergravity: Abelian case, Phys. Rev. D 62 (2000) 044028 [hep-th/0002228] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    I. Antoniadis, S. Ferrara and T.R. Taylor, N=2 heterotic superstring and its dual theory in five-dimensions, Nucl. Phys. B 460 (1996) 489 [hep-th/9511108] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  15. [15]
    P.S. Howe, Off-shell N = 2 and N = 4 supergravity in five-dimensions, in Quantum structure of space and time: proceedings of the Nuffield Workshop, Imperial College London, 3-21 August 1981, M. Duff and C. Isham eds., Cambridge University Press, (1982), pg. 239-253 [INSPIRE].
  16. [16]
    P.S. Howe and U. Lindström, The Supercurrent in Five-dimensions, Phys. Lett. B 103 (1981) 422 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    M. Zucker, Minimal off-shell supergravity in five-dimensions, Nucl. Phys. B 570 (2000) 267 [hep-th/9907082] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  18. [18]
    M. Zucker, Gauged N = 2 off-shell supergravity in five-dimensions, JHEP 08 (2000) 016 [hep-th/9909144] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  19. [19]
    T. Kugo and K. Ohashi, Supergravity tensor calculus in 5-D from 6-D, Prog. Theor. Phys. 104 (2000) 835 [hep-ph/0006231] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    T. Kugo and K. Ohashi, Off-shell D = 5 supergravity coupled to matter Yang-Mills system, Prog. Theor. Phys. 105 (2001) 323 [hep-ph/0010288] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  21. [21]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    H. Nishino and S. Rajpoot, Alternative N = 2 supergravity in five-dimensions with singularities, Phys. Lett. B 502 (2001) 246 [hep-th/0011066] [INSPIRE].CrossRefMATHADSGoogle Scholar
  23. [23]
    H. Nishino and S. Rajpoot, Alternative \( \mathcal{N}=2 \) supergravity in singular five-dimensions with matter/gauge couplings, Nucl. Phys. B 612 (2001) 98 [hep-th/0105138] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  24. [24]
    S.J. Gates Jr., H. Nishino and E. Sezgin, Supergravity in d = 9 and Its Coupling to Noncompact σ Model, Class. Quant. Grav. 3 (1986) 21 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    E. Bergshoeff et al., Weyl multiplets of \( \mathcal{N}=2 \) conformal supergravity in five-dimensions, JHEP 06 (2001) 051 [hep-th/0104113] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    A. Ceresole and G. Dall’Agata, General matter coupled N = 2, D = 5 gauged supergravity, Nucl. Phys. B 585 (2000) 143 [hep-th/0004111] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  27. [27]
    T. Fujita and K. Ohashi, Superconformal tensor calculus in five-dimensions, Prog. Theor. Phys. 106 (2001) 221 [hep-th/0104130] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  28. [28]
    E. Bergshoeff et al., Superconformal N = 2, D = 5 matter with and without actions, JHEP 10 (2002) 045 [hep-th/0205230] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    E. Bergshoeff et al., N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [hep-th/0403045] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  30. [30]
    A. Van Proeyen, Special geometries, from real to quaternionic, hep-th/0110263 [INSPIRE].
  31. [31]
    B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su and A. Van Proeyen, Gauge and Matter Fields Coupled to N = 2 Supergravity, Phys. Lett. B 134 (1984) 37 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N = 2 Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  33. [33]
    S.J. Gates Jr., Superspace Formulation of New Nonlinear σ-models, Nucl. Phys. B 238 (1984) 349 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    G. Sierra and P. Townsend, An Introduction to \( \mathcal{N}=2 \) Rigid Supersymmetry, in Supersymmetry and supergravity 1983: proceedings, B. Milewski ed., World Scientific, Singapore, (1983) [INSPIRE].Google Scholar
  35. [35]
    K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric Completion of an R 2 term in Five-dimensional Supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [INSPIRE].CrossRefMATHGoogle Scholar
  36. [36]
    M. Ozkan and Y. Pang, All off-shell R 2 invariants in five dimensional \( \mathcal{N}=2 \) supergravity, JHEP 08 (2013) 042 [arXiv:1306.1540] [INSPIRE].CrossRefMATHGoogle Scholar
  37. [37]
    S.M. Kuzenko, On compactified harmonic/projective superspace, 5-D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  38. [38]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Five-dimensional Superfield Supergravity, Phys. Lett. B 661 (2008) 42 [arXiv:0710.3440] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  39. [39]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, 5D Supergravity and Projective Superspace, JHEP 02 (2008) 004 [arXiv:0712.3102] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  40. [40]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  41. [41]
    S.M. Kuzenko and J. Novak, On supersymmetric Chern-Simons-type theories in five dimensions, JHEP 02 (2014) 096 [arXiv:1309.6803] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Symmetries of curved superspace in five dimensions, JHEP 10 (2014) 175 [arXiv:1406.0727] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  43. [43]
    F. Coomans and M. Ozkan, An off-shell formulation for internally gauged D = 5, N = 2 supergravity from superconformal methods, JHEP 01 (2013) 099 [arXiv:1210.4704] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  44. [44]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: New approach and applications, JHEP 02 (2015) 111 [arXiv:1410.8682] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  45. [45]
    M. Ozkan and Y. Pang, Supersymmetric Completion of Gauss-Bonnet Combination in Five Dimensions, JHEP 03 (2013) 158 [Erratum ibid. 1307 (2013) 152] [arXiv:1301.6622] [INSPIRE].
  46. [46]
    M. Bañados, R. Troncoso and J. Zanelli, Higher dimensional Chern-Simons supergravity, Phys. Rev. D 54 (1996) 2605 [gr-qc/9601003] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    A. Castro, J.L. Davis, P. Kraus and F. Larsen, String Theory Effects on Five-Dimensional Black Hole Physics, Int. J. Mod. Phys. A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  48. [48]
    F. Bonetti, T.W. Grimm and S. Hohenegger, Exploring 6D origins of 5D supergravities with Chern-Simons terms, JHEP 05 (2013) 124 [arXiv:1303.2661] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  49. [49]
    T.W. Grimm and A. Kapfer, Self-Dual Tensors and Partial Supersymmetry Breaking in Five Dimensions, JHEP 03 (2015) 008 [arXiv:1402.3529] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    T.W. Grimm, A. Kapfer and S. Lüst, Partial Supergravity Breaking and the Effective Action of Consistent Truncations, JHEP 02 (2015) 093 [arXiv:1409.0867] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  51. [51]
    M. Baggio, N. Halmagyi, D.R. Mayerson, D. Robbins and B. Wecht, Higher Derivative Corrections and Central Charges from Wrapped M5-branes, JHEP 12 (2014) 042 [arXiv:1408.2538] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    D. Butter, Projective multiplets and hyperKähler cones in conformal supergravity, arXiv:1410.3604 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Departamento de Ciencias FísicasUniversidad Andrés BelloSantiagoChile

Personalised recommendations