Advertisement

Constraints from conformal symmetry on the three point scalar correlator in inflation

  • Nilay Kundu
  • Ashish Shukla
  • Sandip P. Trivedi
Open Access
Regular Article - Theoretical Physics

Abstract

Using symmetry considerations, we derive Ward identities which relate the three point function of scalar perturbations produced during inflation to the scalar four point function, in a particular limit. The derivation assumes approximate conformal invariance, and the conditions for the slow roll approximation, but is otherwise model independent. The Ward identities allow us to deduce that the three point function must be suppressed in general, being of the same order of magnitude as in the slow roll model. They also fix the three point function in terms of the four point function, upto one constant which we argue is generically suppressed. Our approach is based on analyzing the wave function of the universe, and the Ward identities arise by imposing the requirements of spatial and time reparametrization invariance on it.

Keywords

Conformal and W Symmetry Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Seery, M.S. Sloth and F. Vernizzi, Inflationary trispectrum from graviton exchange, JCAP 03 (2009) 018 [arXiv:0811.3934] [INSPIRE].ADSGoogle Scholar
  2. [2]
    A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, Conformal Invariance and the Four Point Scalar Correlator in Slow-Roll Inflation, JHEP 07 (2014) 011 [arXiv:1401.1426] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    I. Mata, S. Raju and S. Trivedi, CMB from CFT, JHEP 07 (2013) 015 [arXiv:1211.5482] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Creminelli, J. Norena and M. Simonovic, Conformal consistency relations for single-field inflation, JCAP 07 (2012) 052 [arXiv:1203.4595] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].ADSGoogle Scholar
  9. [9]
    N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, Ghost inflation, JCAP 04 (2004) 001 [hep-th/0312100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    I. Antoniadis, P.O. Mazur and E. Mottola, Conformal invariance and cosmic background radiation, Phys. Rev. Lett. 79 (1997) 14 [astro-ph/9611208] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Larsen, J.P. van der Schaar and R.G. Leigh, de Sitter holography and the cosmic microwave background, JHEP 04 (2002) 047 [hep-th/0202127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    F. Larsen and R. McNees, Inflation and de Sitter holography, JHEP 07 (2003) 051 [hep-th/0307026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    P. McFadden and K. Skenderis, Holographic Non-Gaussianity, JCAP 05 (2011) 013 [arXiv:1011.0452] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I. Antoniadis, P.O. Mazur and E. Mottola, Conformal Invariance, Dark Energy and CMB Non-Gaussianity, JCAP 09 (2012) 024 [arXiv:1103.4164] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. McFadden and K. Skenderis, Cosmological 3-point correlators from holography, JCAP 06 (2011) 030 [arXiv:1104.3894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev. D 85 (2012) 041302 [arXiv:1108.0874] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Bzowski, P. McFadden and K. Skenderis, Holographic predictions for cosmological 3-point functions, JHEP 03 (2012) 091 [arXiv:1112.1967] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Kehagias and A. Riotto, Operator Product Expansion of Inflationary Correlators and Conformal Symmetry of de Sitter, Nucl. Phys. B 864 (2012) 492 [arXiv:1205.1523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Kehagias and A. Riotto, The Four-point Correlator in Multifield Inflation, the Operator Product Expansion and the Symmetries of de Sitter, Nucl. Phys. B 868 (2013) 577 [arXiv:1210.1918] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    K. Schalm, G. Shiu and T. van der Aalst, Consistency condition for inflation from (broken) conformal symmetry, JCAP 03 (2013) 005 [arXiv:1211.2157] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Bzowski, P. McFadden and K. Skenderis, Holography for inflation using conformal perturbation theory, JHEP 04 (2013) 047 [arXiv:1211.4550] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Weinberg, Adiabatic modes in cosmology, Phys. Rev. D 67 (2003) 123504 [astro-ph/0302326] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    S. Weinberg, Non-Gaussian Correlations Outside the Horizon, Phys. Rev. D 78 (2008) 123521 [arXiv:0808.2909] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C. Cheung, A.L. Fitzpatrick, J. Kaplan and L. Senatore, On the consistency relation of the 3-point function in single field inflation, JCAP 02 (2008) 021 [arXiv:0709.0295] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L. Senatore and M. Zaldarriaga, A Note on the Consistency Condition of Primordial Fluctuations, JCAP 08 (2012) 001 [arXiv:1203.6884] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P. Creminelli, C. Pitrou and F. Vernizzi, The CMB bispectrum in the squeezed limit, JCAP 11 (2011) 025 [arXiv:1109.1822] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Bartolo, S. Matarrese and A. Riotto, Non-Gaussianity in the Cosmic Microwave Background Anisotropies at Recombination in the Squeezed limit, JCAP 02 (2012) 017 [arXiv:1109.2043] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Creminelli, A. Joyce, J. Khoury and M. Simonovic, Consistency Relations for the Conformal Mechanism, JCAP 04 (2013) 020 [arXiv:1212.3329] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    K. Hinterbichler, L. Hui and J. Khoury, Conformal Symmetries of Adiabatic Modes in Cosmology, JCAP 08 (2012) 017 [arXiv:1203.6351] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    W.D. Goldberger, L. Hui and A. Nicolis, One-particle-irreducible consistency relations for cosmological perturbations, Phys. Rev. D 87 (2013) 103520 [arXiv:1303.1193] [INSPIRE].ADSGoogle Scholar
  33. [33]
    K. Hinterbichler, L. Hui and J. Khoury, An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology, JCAP 01 (2014) 039 [arXiv:1304.5527] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    P. Creminelli, A. Perko, L. Senatore, M. Simonović and G. Trevisan, The Physical Squeezed Limit: Consistency Relations at Order q 2, JCAP 11 (2013) 015 [arXiv:1307.0503] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Berezhiani and J. Khoury, Slavnov-Taylor Identities for Primordial Perturbations, JCAP 02 (2014) 003 [arXiv:1309.4461] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    V. Sreenath and L. Sriramkumar, Examining the consistency relations describing the three-point functions involving tensors, JCAP 10 (2014) 021 [arXiv:1406.1609] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Mirbabayi and M. Zaldarriaga, Double Soft Limits of Cosmological Correlations, JCAP 03 (2015) 025 [arXiv:1409.6317] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Joyce, J. Khoury and M. Simonović, Multiple Soft Limits of Cosmological Correlation Functions, JCAP 01 (2015) 012 [arXiv:1409.6318] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    V. Sreenath, D.K. Hazra and L. Sriramkumar, On the scalar consistency relation away from slow roll, JCAP 02 (2015) 029 [arXiv:1410.0252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    T. Banks and W. Fischler, Holographic Theories of Inflation and Fluctuations, arXiv:1111.4948 [INSPIRE].
  41. [41]
    T. Banks, W. Fischler, T.J. Torres and C.L. Wainwright, Holographic Fluctuations from Unitary de Sitter Invariant Field Theory, arXiv:1306.3999 [INSPIRE].
  42. [42]
    G.L. Pimentel, Inflationary Consistency Conditions from a Wavefunctional Perspective, JHEP 02 (2014) 124 [arXiv:1309.1793] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Solving the Conformal Constraints for Scalar Operators in Momentum Space and the Evaluation of Feynmans Master Integrals, JHEP 07 (2013) 011 [arXiv:1304.6944] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    W. Chemissany and I. Papadimitriou, Lifshitz holography: The whole shebang, JHEP 01 (2015) 052 [arXiv:1408.0795] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond, Cambridge University Press, (2005).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Nilay Kundu
    • 1
  • Ashish Shukla
    • 2
  • Sandip P. Trivedi
    • 2
  1. 1.Harish-Chandra Research InstituteAllahabadIndia
  2. 2.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations