Advertisement

Kink Collisions in Curved Field Space

  • Pontus Ahlqvist
  • Kate Eckerle
  • Brian Greene
Open Access
Regular Article - Theoretical Physics

Abstract

We study bubble universe collisions in the ultrarelativistic limit with the new feature of allowing for nontrivial curvature in field space. We establish a simple geometrical interpretation of such collisions in terms of a double family of field profiles whose tangent vector fields stand in mutual parallel transport. This provides a generalization of the well-known flat field space limit of the free passage approximation. We investigate the limits of this approximation and illustrate our analytical results with numerical simulations.

Keywords

Solitons Monopoles and Instantons Effective field theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  2. [2]
    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    R. Easther, J. Giblin, John T., L. Hui and E.A. Lim, A New Mechanism for Bubble Nucleation: Classical Transitions, Phys. Rev. D 80 (2009) 123519 [arXiv:0907.3234] [INSPIRE].ADSGoogle Scholar
  5. [5]
    J. Giblin, John T., L. Hui, E.A. Lim and I.-S. Yang, How to Run Through Walls: Dynamics of Bubble and Soliton Collisions, Phys. Rev. D 82 (2010) 045019 [arXiv:1005.3493] [INSPIRE].ADSGoogle Scholar
  6. [6]
    L. Susskind, The Anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
  7. [7]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. Garriga, A.H. Guth and A. Vilenkin, Eternal inflation, bubble collisions and the persistence of memory, Phys. Rev. D 76 (2007) 123512 [hep-th/0612242] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Aguirre, M.C. Johnson and M. Tysanner, Surviving the crash: assessing the aftermath of cosmic bubble collisions, Phys. Rev. D 79 (2009) 123514 [arXiv:0811.0866] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M.C. Johnson, H.V. Peiris and L. Lehner, Determining the outcome of cosmic bubble collisions in full General Relativity, Phys. Rev. D 85 (2012) 083516 [arXiv:1112.4487] [INSPIRE].ADSGoogle Scholar
  11. [11]
    B. Greene et al., Tumbling through a landscape: Evidence of instabilities in high-dimensional moduli spaces, Phys. Rev. D 88 (2013) 026005 [arXiv:1303.4428] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Sarangi, G. Shiu and B. Shlaer, Rapid Tunneling and Percolation in the Landscape, Int. J. Mod. Phys. A 24 (2009) 741 [arXiv:0708.4375] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    S.-H.H. Tye, A Renormalization Group Approach to the Cosmological Constant Problem, arXiv:0708.4374 [INSPIRE].
  14. [14]
    A.R. Brown, S. Sarangi, B. Shlaer and A. Weltman, A Wrinkle in Coleman-De Luccia, Phys. Rev. Lett. 99 (2007) 161601 [arXiv:0706.0485] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.R. Brown and A. Dahlen, Small Steps and Giant Leaps in the Landscape, Phys. Rev. D 82 (2010) 083519 [arXiv:1004.3994] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Ahlqvist, K. Eckerle and B. Greene, Bubble Universe Dynamics After Free Passage, JHEP 03 (2015) 031 [arXiv:1310.6069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Physics DepartmentColumbia UniversityNew YorkUnited States
  2. 2.Department of Physics and Department of Applied MathematicsColumbia UniversityNew YorkUnited States
  3. 3.Department of Physics and Department of MathematicsColumbia UniversityNew YorkUnited States

Personalised recommendations