Advertisement

Fiber-base duality and global symmetry enhancement

  • Vladimir Mitev
  • Elli Pomoni
  • Masato Taki
  • Futoshi Yagi
Open Access
Regular Article - Theoretical Physics

Abstract

We show that the 5D Nekrasov partition functions enjoy the enhanced global symmetry of the UV fixed point. The fiber-base duality is responsible for the global symmetry enhancement. For SU(2) with N f ≤ 7 flavors the fiber-base symmetry together with the manifest flavor SO(2N f ) symmetry generate the \( {\mathrm{E}}_{N_{f+1}} \) global symmetry, while in the higher rank case the manifest global symmetry of the two dual theories related by the fiber-base duality map generate the symmetry enhancement. The symmetry enhancement at the level of the partition function is manifest once we chose an appropriate reparametrization for the Coulomb moduli.

Keywords

Supersymmetry and Duality Duality in Gauge Field Theories Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of \( \mathcal{N}=2 \) Superconformal QCD: Towards the String Dual of \( \mathcal{N}=2\mathrm{S}\mathrm{U}\left({N}_c\right) \) SYM with N f = 2N c, arXiv:0912.4918 [INSPIRE].
  8. [8]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  10. [10]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S. Nawata, Localization of N = 4 Superconformal Field Theory on S 1 × S 3 and Index, JHEP 11 (2011) 144 [arXiv:1104.4470] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    W. Peelaers, Higgs branch localization of \( \mathcal{N}=1 \) theories on S 3 × S 1, JHEP 08 (2014) 060 [arXiv:1403.2711] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, arXiv:1406.6793 [INSPIRE].
  14. [14]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian Theories from Brane Junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Taki, Notes on Enhancement of Flavor Symmetry and 5d Superconformal Index, arXiv:1310.7509 [INSPIRE].
  18. [18]
    A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse Dimensions, Phys. Rev. D 90 (2014) 105031 [arXiv:1210.3605] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4D N = 2 gauge theories: 1., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].CrossRefMATHGoogle Scholar
  20. [20]
    O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-Branes, Toric Diagrams and Gauge Theory Duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The Topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Iqbal, C. Kozcaz and C. Vafa, The Refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Iqbal and A.-K. Kashani-Poor, Instanton counting and Chern-Simons theory, Adv. Theor. Math. Phys. 7 (2004) 457 [hep-th/0212279] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    A. Iqbal and A.-K. Kashani-Poor, SU(N) geometries and topological string amplitudes, Adv. Theor. Math. Phys. 10 (2006) 1 [hep-th/0306032] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    M. Taki, Refined Topological Vertex and Instanton Counting, JHEP 03 (2008) 048 [arXiv:0710.1776] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-branes, toric diagrams and gauge theory duality, Int. J. Mod. Phys. Conf. Ser. 21 (2013) 136.CrossRefMATHGoogle Scholar
  29. [29]
    K. Ito, Refined Topological Vertex and Duality of Gauge Theories in Generic Omega Backgrounds, arXiv:1211.6793 [INSPIRE].
  30. [30]
    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral dualities in XXZ spin chains and five dimensional gauge theories, JHEP 12 (2013) 034 [arXiv:1307.1502] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    M. Taki, Seiberg Duality, 5d SCFTs and Nekrasov Partition Functions, arXiv:1401.7200 [INSPIRE].
  33. [33]
    M.R. Gaberdiel and B. Zwiebach, Exceptional groups from open strings, Nucl. Phys. B 518 (1998) 151 [hep-th/9709013] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M.R. Gaberdiel, T. Hauer and B. Zwiebach, Open string-string junction transitions, Nucl. Phys. B 525 (1998) 117 [hep-th/9801205] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    O. DeWolfe and B. Zwiebach, String junctions for arbitrary Lie algebra representations, Nucl. Phys. B 541 (1999) 509 [hep-th/9804210] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    A. Iqbal, Selfintersection number of BPS junctions in backgrounds of three-branes and seven-branes, JHEP 10 (1999) 032 [hep-th/9807117] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Constraints on the BPS spectrum of N = 2, D = 4 theories with A-D-E flavor symmetry, Nucl. Phys. B 534 (1998) 261 [hep-th/9805220] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering the symmetries on [p,q] seven-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3 (1999) 1785 [hep-th/9812028] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering infinite symmetries on [p,q] 7-branes: Kac-Moody algebras and beyond, Adv. Theor. Math. Phys. 3 (1999) 1835 [hep-th/9812209] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    O.J. Ganor, A Test of the chiral E 8 current algebra on a 6 − D noncritical string, Nucl. Phys. B 479 (1996) 197 [hep-th/9607020] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, Nucl. Phys. Proc. Suppl. 58 (1997) 177 [hep-th/9607139] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    O.J. Ganor, Toroidal compactification of heterotic 6 − d noncritical strings down to four-dimensions, Nucl. Phys. B 488 (1997) 223 [hep-th/9608109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    O.J. Ganor, D.R. Morrison and N. Seiberg, Branes, Calabi-Yau spaces and toroidal compactification of the N = 1 six-dimensional E 8 theory, Nucl. Phys. B 487 (1997) 93 [hep-th/9610251] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E strings and N = 4 topological Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G. Zafrir, Duality and enhancement of symmetry in 5d gauge theories, JHEP 12 (2014) 116 [arXiv:1408.4040] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    K.A. Intriligator, Renormalization group fixed points and connections with duality in various dimensions, hep-th/9707089 [INSPIRE].
  53. [53]
    T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, JHEP 03 (2012) 017 [arXiv:1004.1222] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  54. [54]
    A. Iqbal and A.-K. Kashani-Poor, The Vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    Y. Konishi and S. Minabe, Flop invariance of the topological vertex, Int. J. Math. 19 (2008) 27 [math/0601352] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    S. Gukov, A. Iqbal, C. Kozcaz and C. Vafa, Link Homologies and the Refined Topological Vertex, Commun. Math. Phys. 298 (2010) 757 [arXiv:0705.1368] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    M. Taki, Flop Invariance of Refined Topological Vertex and Link Homologies, arXiv:0805.0336 [INSPIRE].
  58. [58]
    A. Iqbal and C. Kozcaz, Refined Topological Strings and Toric Calabi-Yau Threefolds, arXiv:1210.3016 [INSPIRE].
  59. [59]
    H. Hayashi and G. Zoccarato, Exact partition functions of Higgsed 5d T N theories, JHEP 01 (2015) 093 [arXiv:1409.0571] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    R. Feger and T.W. Kephart, LieARTA Mathematica Application for Lie Algebras and Representation Theory, arXiv:1206.6379 [INSPIRE].
  62. [62]
    T. Eguchi and H. Kanno, Topological strings and Nekrasovs formulas, JHEP 12 (2003) 006 [hep-th/0310235] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    A.E. Lawrence and N. Nekrasov, Instanton sums and five-dimensional gauge theories, Nucl. Phys. B 513 (1998) 239 [hep-th/9706025] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    B. Haghighat, G. Lockhart and C. Vafa, Fusing E-strings to heterotic strings: E + EH, Phys. Rev. D 90 (2014) 126012 [arXiv:1406.0850] [INSPIRE].ADSGoogle Scholar
  66. [66]
    K. Sakai, Topological string amplitudes for the local half K3 surface, arXiv:1111.3967 [INSPIRE].
  67. [67]
    K. Sakai, Seiberg-Witten prepotential for E-string theory and global symmetries, JHEP 09 (2012) 077 [arXiv:1207.5739] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    T. Ishii and K. Sakai, Thermodynamic limit of the Nekrasov-type formula for E-string theory, JHEP 02 (2014) 087 [arXiv:1312.1050] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    K. Sakai, A reduced BPS index of E-strings, JHEP 12 (2014) 047 [arXiv:1408.3619] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Kim, S. Kim, K. Lee, J. Park and C. Vafa, to appear.Google Scholar
  71. [71]
    A. Iqbal, A. Neitzke and C. Vafa, A Mysterious duality, Adv. Theor. Math. Phys. 5 (2002) 769 [hep-th/0111068] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    G. Bonelli, The M5-brane on K3 and del Pezzos and multiloop string amplitudes, JHEP 12 (2001) 022 [hep-th/0111126] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    H. Hayashi, Y. Tachikawa and K. Yonekura, Mass-deformed T N as a linear quiver, JHEP 02 (2015) 089 [arXiv:1410.6868] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, arXiv:1410.2806 [INSPIRE].
  75. [75]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    N. Wyllard, A(N − 1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories,JHEP 11(2009) 002 [arXiv:0907.2189] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  79. [79]
    H. Awata and Y. Yamada, Five-dimensional AGT Relation and the Deformed beta-ensemble, Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  80. [80]
    R. Schiappa and N. Wyllard, An A(r) threesome: Matrix models, 2d CFTs and 4d N = 2 gauge theories, J. Math. Phys. 51 (2010) 082304 [arXiv:0911.5337] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  81. [81]
    A. Mironov, A. Morozov, S. Shakirov and A. Smirnov, Proving AGT conjecture as HS duality: extension to five dimensions, Nucl. Phys. B 855 (2012) 128 [arXiv:1105.0948] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  82. [82]
    H. Itoyama, T. Oota and R. Yoshioka, 2d-4d Connection between q-Virasoro/W Block at Root of Unity Limit and Instanton Partition Function on ALE Space, Nucl. Phys. B 877 (2013) 506 [arXiv:1308.2068] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    F. Nieri, S. Pasquetti and F. Passerini, 3d and 5d Gauge Theory Partition Functions as q-deformed CFT Correlators, Lett. Math. Phys. 105 (2015) 109 [arXiv:1303.2626] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  84. [84]
    F. Nieri, S. Pasquetti, F. Passerini and A. Torrielli, 5D partition functions, q-Virasoro systems and integrable spin-chains, JHEP 12 (2014) 040 [arXiv:1312.1294] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M. Aganagic, N. Haouzi, C. Kozcaz and S. Shakirov, Gauge/Liouville Triality, arXiv:1309.1687 [INSPIRE].
  86. [86]
    M. Aganagic, N. Haouzi and S. Shakirov, A n -Triality, arXiv:1403.3657 [INSPIRE].
  87. [87]
    M. Taki, On AGT-W Conjecture and q-Deformed W-Algebra, arXiv:1403.7016 [INSPIRE].
  88. [88]
    V. Mitev and E. Pomoni, Toda 3-Point Functions From Topological Strings, arXiv:1409.6313 [INSPIRE].
  89. [89]
    M. Aganagic and S. Shakirov, Knot Homology and Refined Chern-Simons Index, Commun. Math. Phys. 333 (2015) 187 [arXiv:1105.5117] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    A. Iqbal and C. Kozcaz, Refined Hopf Link Revisited, JHEP 04 (2012) 046 [arXiv:1111.0525] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  91. [91]
    H. Awata and H. Kanno, Macdonald operators and homological invariants of the colored Hopf link, J. Phys. A 44 (2011) 375201 [arXiv:0910.0083] [INSPIRE].MathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Vladimir Mitev
    • 1
  • Elli Pomoni
    • 2
    • 3
  • Masato Taki
    • 4
  • Futoshi Yagi
    • 5
  1. 1.Institut für Mathematik und Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.DESY Theory GroupHamburgGermany
  3. 3.Physics DivisionNational Technical University of AthensAthensGreece
  4. 4.iTHES Research Group and Mathematical Physics LaboratoryRIKEN Nishina CenterSaitamaJapan
  5. 5.Korea Institute for Advanced Study (KIAS)SeoulSouth Korea

Personalised recommendations