Advertisement

Flavour dependent gauged radiative neutrino mass model

  • Seungwon Baek
  • Hiroshi Okada
  • Kei Yagyu
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: μ minus τ symmetry U(1)μτ. A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks U(1)μτ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases from five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the additional neutral gauge boson loop contribution with mass of order 100 MeV and new gauge coupling of order 10−3.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
  2. [2]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K.S. Babu, Model ofcalculableMajorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Baek, P. Ko, H. Okada and E. Senaha, Can Zee-Babu model implemented with scalar dark matter explain both Fermi/LAT 130 GeV γ-ray excess and neutrino physics?, JHEP 09 (2014) 153 [arXiv:1209.1685] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Schmidt, T. Schwetz and H. Zhang, Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider, Nucl. Phys. B 885 (2014) 524 [arXiv:1402.2251] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    H. Okada, T. Toma and K. Yagyu, Inert extension of the Zee-Babu model, Phys. Rev. D 90 (2014) 095005 [arXiv:1408.0961] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Baek, 3.5 keV X-ray line signal from dark matter decay in local U(1)BL extension of Zee-Babu model, arXiv:1410.1992 [INSPIRE].
  8. [8]
    L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Ahriche, S. Nasri and R. Soualah, Radiative neutrino mass model at the e e + linear collider, Phys. Rev. D 89 (2014) 095010 [arXiv:1403.5694] [INSPIRE].ADSGoogle Scholar
  10. [10]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass and novel leptogenesis at the TeV scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Bouchand and A. Merle, Running of radiative neutrino masses: the scotogenic model, JHEP 07 (2012) 084 [arXiv:1205.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Ma, Radiative scaling neutrino mass and warm dark matter, Phys. Lett. B 717 (2012) 235 [arXiv:1206.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Hehn and A. Ibarra, A radiative model with a naturally mild neutrino mass hierarchy, Phys. Lett. B 718 (2013) 988 [arXiv:1208.3162] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    E. Ma, Vanishing Higgs one-loop quadratic divergence in the scotogenic model and beyond, Phys. Lett. B 732 (2014) 167 [arXiv:1401.3284] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    S. Fraser, E. Ma and O. Popov, Scotogenic inverse seesaw model of neutrino mass, Phys. Lett. B 737 (2014) 280 [arXiv:1408.4785] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    D. Schmidt, T. Schwetz and T. Toma, Direct detection of leptophilic dark matter in a model with radiative neutrino masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. March-Russell, C. McCabe and M. McCullough, Neutrino-flavoured sneutrino dark matter, JHEP 03 (2010) 108 [arXiv:0911.4489] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    M. Aoki, S. Kanemura, T. Shindou and K. Yagyu, An R-parity conserving radiative neutrino mass model without right-handed neutrinos, JHEP 07 (2010) 084 [Erratum ibid. 11 (2010)049] [arXiv:1005.5159] [INSPIRE].
  20. [20]
    M. Aoki, J. Kubo, T. Okawa and H. Takano, Impact of inert Higgsino dark matter, Phys. Lett. B 707 (2012) 107 [arXiv:1110.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Kanemura, N. Machida and T. Shindou, Radiative neutrino mass, dark matter and electroweak baryogenesis from the supersymmetric gauge theory with confinement, Phys. Lett. B 738 (2014) 178 [arXiv:1405.5834] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Kanemura, O. Seto and T. Shimomura, Masses of dark matter and neutrino from TeV scale spontaneous U(1)BL breaking, Phys. Rev. D 84 (2011) 016004 [arXiv:1101.5713] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Lindner, D. Schmidt and T. Schwetz, Dark matter and neutrino masses from global U(1)BL symmetry breaking, Phys. Lett. B 705 (2011) 324 [arXiv:1105.4626] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Kanemura, T. Nabeshima and H. Sugiyama, TeV-scale seesaw with loop-induced Dirac mass term and dark matter from U(1)BL gauge symmetry breaking, Phys. Rev. D 85 (2012) 033004 [arXiv:1111.0599] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H. Okada and T. Toma, Fermionic dark matter in radiative inverse seesaw model with U(1)BL, Phys. Rev. D 86 (2012) 033011 [arXiv:1207.0864] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Y. Kajiyama, H. Okada and T. Toma, Light dark matter candidate in BL gauged radiative inverse seesaw, Eur. Phys. J. C 73 (2013) 2381 [arXiv:1210.2305] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Okada, Dark matters in gauged B − 3L i model, arXiv:1212.0492 [INSPIRE].
  28. [28]
    S. Baek, H. Okada and T. Toma, Two loop neutrino model and dark matter particles with global BL symmetry, JCAP 06 (2014) 027 [arXiv:1312.3761] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Kanemura, T. Matsui and H. Sugiyama, Neutrino mass and dark matter from gauged U(1)BL breaking, Phys. Rev. D 90 (2014) 013001 [arXiv:1405.1935] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Y.H. Ahn and H. Okada, Non-zero θ 13 linking to dark matter from non-Abelian discrete flavor model in radiative seesaw, Phys. Rev. D 85 (2012) 073010 [arXiv:1201.4436] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. Ma, A. Natale and A. Rashed, Scotogenic A 4 neutrino model for nonzero θ 13 and large δ CP, Int. J. Mod. Phys. A 27 (2012) 1250134 [arXiv:1206.1570] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    Y. Kajiyama, H. Okada and K. Yagyu, T 7 flavor model in three loop seesaw and Higgs phenomenology, JHEP 10 (2013) 196 [arXiv:1307.0480] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.E. Carcamo Hernandez, I. de Medeiros Varzielas, S.G. Kovalenko, H. Päs and I. Schmidt, Lepton masses and mixings in an A 4 multi-Higgs model with a radiative seesaw mechanism, Phys. Rev. D 88 (2013) 076014 [arXiv:1307.6499] [INSPIRE].ADSGoogle Scholar
  34. [34]
    E. Ma and A. Natale, Scotogenic Z2 or U(1)D model of neutrino mass with Δ(27) symmetry, Phys. Lett. B 734 (2014) 403 [arXiv:1403.6772] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Lindner, S. Schmidt and J. Smirnov, Neutrino masses and conformal electro-weak symmetry breaking, JHEP 10 (2014) 177 [arXiv:1405.6204] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    H. Okada and Y. Orikasa, Classically conformal radiative neutrino model with gauged BL symmetry, arXiv:1412.3616 [INSPIRE].
  37. [37]
    S. Kanemura and H. Sugiyama, Dark matter and a suppression mechanism for neutrino masses in the Higgs triplet model, Phys. Rev. D 86 (2012) 073006 [arXiv:1202.5231] [INSPIRE].ADSGoogle Scholar
  38. [38]
    Y. Kajiyama, H. Okada and K. Yagyu, Two loop radiative seesaw model with inert triplet scalar field, Nucl. Phys. B 874 (2013) 198 [arXiv:1303.3463] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A. Ahriche, C.-S. Chen, K.L. McDonald and S. Nasri, Three-loop model of neutrino mass with dark matter, Phys. Rev. D 90 (2014) 015024 [arXiv:1404.2696] [INSPIRE].ADSGoogle Scholar
  40. [40]
    P.-H. Gu and U. Sarkar, Radiative neutrino mass, dark matter and leptogenesis, Phys. Rev. D 77 (2008) 105031 [arXiv:0712.2933] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Kanemura, T. Nabeshima and H. Sugiyama, Neutrino masses from loop-induced Dirac Yukawa couplings, Phys. Lett. B 703 (2011) 66 [arXiv:1106.2480] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Y. Farzan and E. Ma, Dirac neutrino mass generation from dark matter, Phys. Rev. D 86 (2012) 033007 [arXiv:1204.4890] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Kanemura, T. Matsui and H. Sugiyama, Loop suppression of Dirac neutrino mass in the neutrinophilic two Higgs doublet model, Phys. Lett. B 727 (2013) 151 [arXiv:1305.4521] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H. Okada, Two loop induced Dirac neutrino model and dark matters with global U(1) symmetry, arXiv:1404.0280 [INSPIRE].
  45. [45]
    E. Ma, Radiative origin of all quark and lepton masses through dark matter with flavor symmetry, Phys. Rev. Lett. 112 (2014) 091801 [arXiv:1311.3213] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    H. Okada and K. Yagyu, Radiative generation of lepton masses, Phys. Rev. D 89 (2014) 053008 [arXiv:1311.4360] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Baek, H. Okada and T. Toma, Radiative lepton model and dark matter with global U(1) symmetry, Phys. Lett. B 732 (2014) 85 [arXiv:1401.6921] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H. Okada and K. Yagyu, Radiative generation of lepton masses with the U(1) gauge symmetry, Phys. Rev. D 90 (2014) 035019 [arXiv:1405.2368] [INSPIRE].ADSGoogle Scholar
  49. [49]
    E. Ma, Syndetic model of fundamental interactions, Phys. Lett. B 741 (2015) 202 [arXiv:1411.6679] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without fine-tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Aoki, S. Kanemura and O. Seto, A model of TeV scale physics for neutrino mass, dark matter and baryon asymmetry and its phenomenology, Phys. Rev. D 80 (2009) 033007 [arXiv:0904.3829] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Aoki, S. Kanemura and K. Yagyu, Triviality and vacuum stability bounds in the three-loop neutrino mass model, Phys. Rev. D 83 (2011) 075016 [arXiv:1102.3412] [INSPIRE].ADSGoogle Scholar
  53. [53]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P.-H. Gu and U. Sarkar, Radiative seesaw in left-right symmetric model, Phys. Rev. D 78 (2008) 073012 [arXiv:0807.0270] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P. Fileviez Perez and M.B. Wise, On the origin of neutrino masses, Phys. Rev. D 80 (2009) 053006 [arXiv:0906.2950] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Aoki, S. Kanemura and K. Yagyu, Doubly-charged scalar bosons from the doublet, Phys. Lett. B 702 (2011) 355 [Erratum ibid. B 706 (2012) 495] [arXiv:1105.2075] [INSPIRE].
  58. [58]
    K. Kumericki, I. Picek and B. Radovcic, Critique of fermionic RνMDM and its scalar variants, JHEP 07 (2012) 039 [arXiv:1204.6597] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Kumericki, I. Picek and B. Radovcic, TeV-scale seesaw with quintuplet fermions, Phys. Rev. D 86 (2012) 013006 [arXiv:1204.6599] [INSPIRE].ADSGoogle Scholar
  60. [60]
    P.S.B. Dev and A. Pilaftsis, Minimal radiative neutrino mass mechanism for inverse seesaw models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Gustafsson, J.M. No and M.A. Rivera, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett. 110 (2013) 211802 [arXiv:1212.4806] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Aoki, J. Kubo and H. Takano, Two-loop radiative seesaw mechanism with multicomponent dark matter explaining the possible γ excess in the Higgs boson decay and at the Fermi LAT, Phys. Rev. D 87 (2013) 116001 [arXiv:1302.3936] [INSPIRE].ADSGoogle Scholar
  63. [63]
    Y. Kajiyama, H. Okada and T. Toma, Multicomponent dark matter particles in a two-loop neutrino model, Phys. Rev. D 88 (2013) 015029 [arXiv:1303.7356] [INSPIRE].ADSGoogle Scholar
  64. [64]
    B. Dasgupta, E. Ma and K. Tsumura, Weakly interacting massive particle dark matter and radiative neutrino mass from Peccei-Quinn symmetry, Phys. Rev. D 89 (2014) 041702 [arXiv:1308.4138] [INSPIRE].ADSGoogle Scholar
  65. [65]
    K.L. McDonald, Probing exotic fermions from a seesaw/radiative model at the LHC, JHEP 11 (2013) 131 [arXiv:1310.0609] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Aoki and T. Toma, Impact of semi-annihilation of Z3 symmetric dark matter with radiative neutrino masses, JCAP 09 (2014) 016 [arXiv:1405.5870] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    H. Okada and Y. Orikasa, X-ray line in radiative neutrino model with global U(1) symmetry, Phys. Rev. D 90 (2014) 075023 [arXiv:1407.2543] [INSPIRE].ADSGoogle Scholar
  68. [68]
    H. Hatanaka, K. Nishiwaki, H. Okada and Y. Orikasa, A three-loop neutrino model with global U(1) symmetry, Nucl. Phys. B 894 (2015) 268 [arXiv:1412.8664] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  69. [69]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Ahriche, K.L. McDonald and S. Nasri, A model of radiative neutrino mass: with or without dark matter, JHEP 10 (2014) 167 [arXiv:1404.5917] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    C.-S. Chen, K.L. McDonald and S. Nasri, A class of three-loop models with neutrino mass and dark matter, Phys. Lett. B 734 (2014) 388 [arXiv:1404.6033] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, Systematic classification of two-loop realizations of the Weinberg operator, JHEP 03 (2015) 040 [arXiv:1411.7038] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S.S.C. Law and K.L. McDonald, The simplest models of radiative neutrino mass, Int. J. Mod. Phys. A 29 (2014) 1450064 [arXiv:1303.6384] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  74. [74]
    E. Ma, Derivation of dark matter parity from lepton parity, arXiv:1502.02200 [INSPIRE].
  75. [75]
    S. Baek, N.G. Deshpande, X.G. He and P. Ko, Muon anomalous g − 2 and gauged L μ -L τ models, Phys. Rev. D 64 (2001) 055006 [hep-ph/0104141] [INSPIRE].ADSGoogle Scholar
  76. [76]
    E.J. Chun and K. Turzynski, Quasi-degenerate neutrinos and leptogenesis from L μ -L τ, Phys. Rev. D 76 (2007) 053008 [hep-ph/0703070] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S. Baek and P. Ko, Phenomenology of U(1) charged dark matter at PAMELA and colliders, JCAP 10 (2009) 011 [arXiv:0811.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    P.J. Fox and E. Poppitz, Leptophilic dark matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].ADSGoogle Scholar
  79. [79]
    D. Feldman, Z. Liu, P. Nath and G. Peim, Multicomponent dark matter in supersymmetric hidden sector extensions, Phys. Rev. D 81 (2010) 095017 [arXiv:1004.0649] [INSPIRE].ADSGoogle Scholar
  80. [80]
    J. Heeck and W. Rodejohann, Gauged L μ -L τ symmetry at the electroweak scale, Phys. Rev. D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].ADSGoogle Scholar
  81. [81]
    X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z model, Phys. Rev. D 44 (1991) 2118 [INSPIRE].ADSGoogle Scholar
  82. [82]
    R. Foot, X.G. He, H. Lew and R.R. Volkas, Model for a light Z boson, Phys. Rev. D 50 (1994) 4571 [hep-ph/9401250] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S. Baek and P. Ko, Phenomenology of U(1) charged dark matter at PAMELA and colliders, JCAP 10 (2009) 011 [arXiv:0811.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    K. Harigaya, T. Igari, M.M. Nojiri, M. Takeuchi and K. Tobe, Muon g − 2 and LHC phenomenology in the L μ -L τ gauge symmetric model, JHEP 03 (2014) 105 [arXiv:1311.0870] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    T. Araki et al., Cosmic neutrino spectrum and the muon anomalous magnetic moment in the gauged L μ -L τ model, Phys. Rev. D 91 (2015) 037301 [arXiv:1409.4180] [INSPIRE].ADSGoogle Scholar
  86. [86]
    AMS collaboration, M. Aguilar et al., First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    Q.-H. Cao, C.-R. Chen and T. Gong, Leptophilic dark matter and AMS-02 cosmic-ray positron flux, arXiv:1409.7317 [INSPIRE].
  88. [88]
    H. Fritzsch, Z.-Z. Xing and S. Zhou, Two-zero textures of the Majorana neutrino mass matrix and current experimental tests, JHEP 09 (2011) 083 [arXiv:1108.4534] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  89. [89]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  90. [90]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  91. [91]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].Google Scholar
  92. [92]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, Upgraded breaking of the HLS model: a full solution to the τ e + e and ϕ decay issues and its consequences on g − 2 VMD estimates, Eur. Phys. J. C 72 (2012) 1848 [arXiv:1106.1315] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].CrossRefGoogle Scholar
  95. [95]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μ -L τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSGoogle Scholar
  97. [97]
    CHARM-II collaboration, D. Geiregat et al., First observation of neutrino trident production, Phys. Lett. B 245 (1990) 271 [INSPIRE].ADSGoogle Scholar
  98. [98]
    CCFR collaboration, S.R. Mishra et al., Neutrino tridents and W Z interference, Phys. Rev. Lett. 66 (1991) 3117 [INSPIRE].CrossRefGoogle Scholar
  99. [99]
    BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    S. Baek, P. Ko and W.-I. Park, Local Z 2 scalar dark matter model confronting galactic GeV-scale γ-ray and muon (g − 2), arXiv:1407.6588 [INSPIRE].
  101. [101]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  102. [102]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  103. [103]
    S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting nonminimal Higgs sectors, Phys. Rev. D 90 (2014) 075001 [arXiv:1406.3294] [INSPIRE].ADSGoogle Scholar
  104. [104]
    D.M. Asner et al., ILC Higgs white paper, arXiv:1310.0763 [INSPIRE].
  105. [105]
    S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.School of PhysicsKIASSeoulSouth Korea
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom

Personalised recommendations