The landscape of M-theory compactifications on seven-manifolds with G2 holonomy

Open Access
Regular Article - Theoretical Physics

Abstract

We study the physics of globally consistent four-dimensional \( \mathcal{N} \) = 1 super-symmetric M-theory compactifications on G2 manifolds constructed via twisted connected sum; there are now perhaps fifty million examples of these manifolds. We study a rich example that exhibits U(1)3 gauge symmetry and a spectrum of massive charged particles that includes a trifundamental. Applying recent mathematical results to this example, we compute the form of membrane instanton corrections to the superpotential and spacetime topology change in a compact model; the latter include both the (non-isolated) G2 flop and conifold transitions. The conifold transition spontaneously breaks the gauge symmetry to U(1)2, and associated field theoretic computations of particle charges make correct predictions for the topology of the deformed G2 manifold. We discuss physical aspects of the abelian G2 landscape broadly, including aspects of Higgs and Coulomb branches, membrane instanton corrections, and some general aspects of topology change.

Keywords

Superstring Vacua M-Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125 [math/0012189] [INSPIRE].MathSciNetMATHGoogle Scholar
  2. [2]
    A. Kovalev and N.-H. Lee, K3 surfaces with non-symplectic involution and compact irreducible G 2 -manifolds, Math. Proc. Cambridge Philos. Soc. 151 (2011) 193 [arXiv:0810.0957].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A. Corti, M. Haskins, J. Nordström and T. Pacini, Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds, Geom. Topol. 17 (2013) 1955.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Haskins, H.-J. Hein and J. Nordström, Asymptotically cylindrical Calabi-Yau manifolds, to appear in J. Diff. Geom. arXiv:1212.6929.
  5. [5]
    A. Corti, M. Haskins, J. Nordström and T. Pacini, G 2 -manifolds and associative submanifolds via semi-Fano 3-folds, to appear in Duke Math. J. arXiv:1207.4470 [INSPIRE].
  6. [6]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M. Reid, The moduli space of 3-folds with K = 0 may nevertheless be irreducible, Math. Ann. 278 (1987) 329.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. Halverson and D.R. Morrsion, On gauge enhancement and singular limits in G 2 compactifications of M-theory, to appear.Google Scholar
  9. [9]
    J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep-th/9907026 [INSPIRE].
  10. [10]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Multiple mirror manifolds and topology change in string theory, Phys. Lett. B 303 (1993) 249 [hep-th/9301043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    B.R. Greene, D.R. Morrison and A. Strominger, Black hole condensation and the unification of string vacua, Nucl. Phys. B 451 (1995) 109 [hep-th/9504145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    K. Intriligator, H. Jockers, P. Mayr, D.R. Morrison and M.R. Plesser, Conifold Transitions in M-theory on Calabi-Yau Fourfolds with Background Fluxes, Adv. Theor. Math. Phys. 17 (2013) 601 [arXiv:1203.6662] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Atiyah, J.M. Maldacena and C. Vafa, An M-theory flop as a large-N duality, J. Math. Phys. 42 (2001) 3209 [hep-th/0011256] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Atiyah and E. Witten, M theory dynamics on a manifold of G 2 holonomy, Adv. Theor. Math. Phys. 6 (2003) 1 [hep-th/0107177] [INSPIRE].CrossRefMATHGoogle Scholar
  17. [17]
    R.L. Bryant, Metrics with exceptional holonomy, Ann. Math. 126 (1987) 525.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    D. Joyce, Compact Manifolds with Special Holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford U.K. (2000).Google Scholar
  19. [19]
    R. Harvey and H.B. Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G 2 . I, J. Diff. Geom. 43 (1996) 291.CrossRefMATHGoogle Scholar
  21. [21]
    D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G 2 . II, J. Diff. Geom. 43 (1996) 329.CrossRefMATHGoogle Scholar
  22. [22]
    E. Witten, On flux quantization in M-theory and the effective action, J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) × U(1) × U(1) gauge symmetry, JHEP 03 (2014) 021 [arXiv:1310.0463] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    B.S. Acharya, On Realizing N = 1 super Yang-Mills in M-theory, hep-th/0011089 [INSPIRE].
  25. [25]
    T. Friedmann and E. Witten, Unification scale, proton decay and manifolds of G 2 holonomy, Adv. Theor. Math. Phys. 7 (2003) 577 [hep-th/0211269] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    G. Papadopoulos and P.K. Townsend, Compactification of D = 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Brandhuber, J. Gomis, S.S. Gubser and S. Gukov, Gauge theory at large-N and new G 2 holonomy metrics, Nucl. Phys. B 611 (2001) 179 [hep-th/0106034] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Cohomogeneity one manifolds of spin(7) and G 2 holonomy, Phys. Rev. D 65 (2002) 106004 [hep-th/0108245] [INSPIRE].ADSMATHGoogle Scholar
  30. [30]
    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, M theory conifolds, Phys. Rev. Lett. 88 (2002) 121602 [hep-th/0112098] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    B.S. Acharya, M theory, Joyce orbifolds and super Yang-Mills, Adv. Theor. Math. Phys. 3 (1999) 227 [hep-th/9812205] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    B.S. Acharya and S. Gukov, M theory and singularities of exceptional holonomy manifolds, Phys. Rept. 392 (2004) 121 [hep-th/0409191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Cvetič, G. Shiu and A.M. Uranga, Chiral type-II orientifold constructions as M-theory on G 2 holonomy spaces, hep-th/0111179 [INSPIRE].
  34. [34]
    M. Cvetič, G. Shiu and A.M. Uranga, Chiral four-dimensional N = 1 supersymmetric type 2A orientifolds from intersecting D6 branes, Nucl. Phys. B 615 (2001) 3 [hep-th/0107166] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    M. Cvetič, G. Shiu and A.M. Uranga, Three family supersymmetric standard-like models from intersecting brane worlds, Phys. Rev. Lett. 87 (2001) 201801 [hep-th/0107143] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D.L. Wilkens, Closed (s − 1)-connected (2s + 1)-manifolds, s = 3, 7, Bull. London Math. Soc. 4 (1972) 27.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    D. Crowley and J. Nordström, The classification of 2-connected 7-manifolds, arXiv:1406.2226.
  38. [38]
    A. Grassi, J. Halverson and J.L. Shaneson, Matter From Geometry Without Resolution, JHEP 10 (2013) 205 [arXiv:1306.1832] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A. Grassi, J. Halverson and J.L. Shaneson, Non-Abelian Gauge Symmetry and the Higgs Mechanism in F-theory, Commun. Math. Phys. 336 (2015) 1231 [arXiv:1402.5962] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    A. Grassi, J. Halverson and J.L. Shaneson, Geometry and Topology of String Junctions, arXiv:1410.6817 [INSPIRE].
  41. [41]
    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    M. Cvetič, R. Donagi, J. Halverson and J. Marsano, On Seven-Brane Dependent Instanton Prefactors in F-theory, JHEP 11 (2012) 004 [arXiv:1209.4906] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Kerstan and T. Weigand, Fluxed M5-instantons in F-theory, Nucl. Phys. B 864 (2012) 597 [arXiv:1205.4720] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    B.S. Acharya, K. Bobkov, G. Kane, P. Kumar and D. Vaman, An M-theory Solution to the Hierarchy Problem, Phys. Rev. Lett. 97 (2006) 191601 [hep-th/0606262] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the Electroweak Scale and Stabilizing Moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    C. Beasley and E. Witten, A note on fluxes and superpotentials in M-theory compactifications on manifolds of G 2 holonomy, JHEP 07 (2002) 046 [hep-th/0203061] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B.S. Acharya, G. Kane and P. Kumar, Compactified String Theories - Generic Predictions for Particle Physics, Int. J. Mod. Phys. A 27 (2012) 1230012 [arXiv:1204.2795] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUnited States
  2. 2.Departments of Mathematics and PhysicsUniversity of CaliforniaSanta BarbaraUnited States

Personalised recommendations