# Extending LHC coverage to light pseudoscalar mediators and coy dark sectors

- 210 Downloads
- 24 Citations

## Abstract

Many dark matter models involving weakly interacting massive particles (WIMPs) feature new, relatively light pseudoscalars that mediate dark matter pair annihilation into Standard Model fermions. In particular, simple models of this type can explain the gamma ray excess originating in the Galactic Center as observed by the Fermi Large Area Telescope. In many cases the pseudoscalar’s branching ratio into WIMPs is suppressed, making these states challenging to detect at colliders through standard dark matter searches. Here, we study the prospects for observing these light mediator states at the LHC without exploiting missing energy techniques. While existing searches effectively probe pseudoscalars with masses between 5-14 GeV and above 90 GeV, the LHC reach can be extended to cover much of the interesting parameter space in the intermediate 20-80 GeV mass range in which the mediator can have appreciable Yukawa-like couplings to Standard Model fermions but would have escaped detection by LEP and other experiments. Models explaining the Galactic Center excess via a light pseudoscalar mediator can give rise to a promising signal in this regime through the associated production of the mediator with bottom quarks while satisfying all other existing constraints. We perform an analysis of the backgrounds and trigger efficiencies, detailing the cuts that can be used to extract the signal. A significant portion of the otherwise unconstrained parameter space of these models can be conclusively tested at the 13 TeV LHC with 100 fb^{−1}, and we encourage the ATLAS and CMS collaborations to extend their existing searches to this mass range.

### Keywords

Supersymmetry Phenomenology Hadronic Colliders## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

### References

- [1]L. Goodenough and D. Hooper,
*Possible evidence for dark matter annihilation in the inner Milky Way from the Fermi Gamma Ray Space Telescope*, arXiv:0910.2998 [INSPIRE]. - [2]D. Hooper and L. Goodenough,
*Dark matter annihilation in the galactic center as seen by the Fermi Gamma Ray Space Telescope*,*Phys. Lett.***B 697**(2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar - [3]A. Boyarsky, D. Malyshev and O. Ruchayskiy,
*A comment on the emission from the galactic center as seen by the Fermi telescope*,*Phys. Lett.***B 705**(2011) 165 [arXiv:1012.5839] [INSPIRE].ADSCrossRefGoogle Scholar - [4]D. Hooper and T. Linden,
*On the origin of the gamma rays from the galactic center*,*Phys. Rev.***D 84**(2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar - [5]K.N. Abazajian and M. Kaplinghat,
*Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission*,*Phys. Rev.***D 86**(2012) 083511 [*Erratum ibid.***D 87**(2013) 129902] [arXiv:1207.6047] [INSPIRE]. - [6]D. Hooper and T.R. Slatyer,
*Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating dark matter*,*Phys. Dark Univ.***2**(2013) 118 [arXiv:1302.6589] [INSPIRE].CrossRefGoogle Scholar - [7]C. Gordon and O. Macias,
*Dark matter and pulsar model constraints from galactic center Fermi-LAT gamma ray observations*,*Phys. Rev.***D 88**(2013) 083521 [*Erratum ibid.***D 89**(2014) 049901] [arXiv:1306.5725] [INSPIRE]. - [8]K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat,
*Astrophysical and dark matter interpretations of extended gamma-ray emission from the galactic center*,*Phys. Rev.***D 90**(2014) 023526 [arXiv:1402.4090] [INSPIRE].ADSGoogle Scholar - [9]T. Daylan et al.,
*The characterization of the gamma-ray signal from the central Milky Way: a compelling case for annihilating dark matter*, arXiv:1402.6703 [INSPIRE]. - [10]B. Zhou et al.,
*GeV excess in the Milky Way: depending on diffuse galactic gamma ray emission template?*, arXiv:1406.6948 [INSPIRE]. - [11]F. Calore, I. Cholis and C. Weniger,
*Background model systematics for the Fermi GeV excess*, arXiv:1409.0042 [INSPIRE]. - [12]P. Agrawal, B. Batell, P.J. Fox and R. Harnik,
*WIMPs at the galactic center*, arXiv:1411.2592 [INSPIRE]. - [13]I. Cholis, D. Hooper and T. Linden,
*Challenges in explaining the galactic center gamma-ray excess with millisecond pulsars*, arXiv:1407.5625 [INSPIRE]. - [14]C. Boehm, M.J. Dolan, C. McCabe, M. Spannowsky and C.J. Wallace,
*Extended gamma-ray emission from coy dark matter*,*JCAP***05**(2014) 009 [arXiv:1401.6458] [INSPIRE].ADSCrossRefGoogle Scholar - [15]S. Ipek, D. McKeen and A.E. Nelson,
*A renormalizable model for the galactic center gamma ray excess from dark matter annihilation*,*Phys. Rev.***D 90**(2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar - [16]C. Cheung, M. Papucci, D. Sanford, N.R. Shah and K.M. Zurek,
*NMSSM interpretation of the galactic center excess*,*Phys. Rev.***D 90**(2014) 075011 [arXiv:1406.6372] [INSPIRE].ADSGoogle Scholar - [17]J. Guo, J. Li, T. Li and A.G. Williams,
*NMSSM explanations of the galactic gamma ray excess and promising LHC searches*, arXiv:1409.7864 [INSPIRE]. - [18]J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson,
*The Higgs hunter*’*s guide*,*Front. Phys.***80**(2000) 1 [INSPIRE].Google Scholar - [19]B. Batell, M. Pospelov and A. Ritz,
*Multi-lepton signatures of a hidden sector in rare B decays*,*Phys. Rev.***D 83**(2011) 054005 [arXiv:0911.4938] [INSPIRE].ADSGoogle Scholar - [20]
- [21]M.J. Dolan, C. McCabe, F. Kahlhoefer and K. Schmidt-Hoberg,
*A taste of dark matter: flavour constraints on pseudoscalar mediators*, arXiv:1412.5174 [INSPIRE]. - [22]E. Izaguirre, G. Krnjaic and B. Shuve,
*The galactic center excess from the bottom up*,*Phys. Rev.***D 90**(2014) 055002 [arXiv:1404.2018] [INSPIRE].ADSGoogle Scholar - [23]J. Kozaczuk and S. Profumo,
*Light NMSSM neutralino dark matter in the wake of CDMS II and a 126 GeV Higgs boson*,*Phys. Rev.***D 89**(2014) 095012 [arXiv:1308.5705] [INSPIRE].ADSGoogle Scholar - [24]K. Ghorbani,
*Fermionic dark matter with pseudo-scalar Yukawa interaction*,*JCAP***01**(2015) 015 [arXiv:1408.4929] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [25]M.R. Buckley, D. Feld and D. Goncalves,
*Scalar simplified models for dark matter*,*Phys. Rev.***D 91**(2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar - [26]P. Harris, V.V. Khoze, M. Spannowsky and C. Williams,
*Constraining dark sectors at colliders: beyond the effective theory approach*,*Phys. Rev.***D 91**(2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar - [27]C. Arina, E. Del Nobile and P. Panci,
*Dark matter with pseudoscalar-mediated interactions explains the DAMA signal and the galactic center excess*,*Phys. Rev. Lett.***114**(2015) 011301 [arXiv:1406.5542] [INSPIRE].ADSCrossRefGoogle Scholar - [28]A. Hektor and L. Marzola,
*Coy dark matter and the anomalous magnetic moment*,*Phys. Rev.***D 90**(2014) 053007 [arXiv:1403.3401] [INSPIRE].ADSGoogle Scholar - [29]SuperCDMS collaboration, R. Agnese et al.,
*Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment*,*Phys. Rev. Lett.***112**(2014) 041302 [arXiv:1309.3259] [INSPIRE].ADSCrossRefGoogle Scholar - [30]LUX collaboration, D.S. Akerib et al.,
*First results from the LUX dark matter experiment at the Sanford Underground Research Facility*,*Phys. Rev. Lett.***112**(2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar - [31]SuperCDMS collaboration, R. Agnese et al.,
*Search for low-mass weakly interacting massive particles with SuperCDMS*,*Phys. Rev. Lett.***112**(2014) 241302 [arXiv:1402.7137] [INSPIRE].ADSCrossRefGoogle Scholar - [32]CRESST-II collaboration, G. Angloher et al.,
*Results on low mass WIMPs using an upgraded CRESST-II detector*,*Eur. Phys. J.***C 74**(2014) 3184 [arXiv:1407.3146] [INSPIRE].Google Scholar - [33]ATLAS collaboration,
*Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS*,*Phys. Rev. Lett.***112**(2014) 201802 [arXiv:1402.3244] [INSPIRE].ADSCrossRefGoogle Scholar - [34]CMS collaboration,
*Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes*,*Eur. Phys. J.***C 74**(2014) 2980 [arXiv:1404.1344] [INSPIRE].ADSGoogle Scholar - [35]A. Berlin, D. Hooper and S.D. McDermott,
*Simplified dark matter models for the galactic center gamma-ray excess*,*Phys. Rev.***D 89**(2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar - [36]D. Hooper,
*Z*^{′}*mediated dark matter models for the galactic center gamma-ray excess*,*Phys. Rev.***D 91**(2015) 035025 [arXiv:1411.4079] [INSPIRE].ADSGoogle Scholar - [37]C. Boehm, M.J. Dolan and C. McCabe,
*A weighty interpretation of the galactic centre excess*,*Phys. Rev.***D 90**(2014) 023531 [arXiv:1404.4977] [INSPIRE].ADSGoogle Scholar - [38]M. Abdullah et al.,
*Hidden on-shell mediators for the galactic center γ-ray excess*,*Phys. Rev.***D 90**(2014) 035004 [arXiv:1404.6528] [INSPIRE].ADSGoogle Scholar - [39]A. Martin, J. Shelton and J. Unwin,
*Fitting the galactic center gamma-ray excess with cascade annihilations*,*Phys. Rev.***D 90**(2014) 103513 [arXiv:1405.0272] [INSPIRE].ADSGoogle Scholar - [40]A. Berlin, P. Gratia, D. Hooper and S.D. McDermott,
*Hidden sector dark matter models for the galactic center gamma-ray excess*,*Phys. Rev.***D 90**(2014) 015032 [arXiv:1405.5204] [INSPIRE].ADSGoogle Scholar - [41]P. Ko, W.-I. Park and Y. Tang,
*Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center*,*JCAP***09**(2014) 013 [arXiv:1404.5257] [INSPIRE].ADSCrossRefGoogle Scholar - [42]D.G. Cerdeno, M. Peiro and S. Robles,
*Fits to the Fermi-LAT GeV excess with RH sneutrino dark matter: implications for direct and indirect dark matter searches and the LHC*, arXiv:1501.01296 [INSPIRE]. - [43]A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd,
*Effective field theory approach to the galactic center gamma-ray excess*,*Phys. Rev.***D 90**(2014) 115003 [arXiv:1403.5027] [INSPIRE].ADSGoogle Scholar - [44]P. Agrawal, B. Batell, D. Hooper and T. Lin,
*Flavored dark matter and the galactic center gamma-ray excess*,*Phys. Rev.***D 90**(2014) 063512 [arXiv:1404.1373] [INSPIRE].ADSGoogle Scholar - [45]J. Huang, T. Liu, L.-T. Wang and F. Yu,
*Supersymmetric subelectroweak scale dark matter, the galactic center gamma-ray excess and exotic decays of the 125 GeV Higgs boson*,*Phys. Rev.***D 90**(2014) 115006 [arXiv:1407.0038] [INSPIRE].ADSGoogle Scholar - [46]M. Cahill-Rowley, J. Gainer, J. Hewett and T. Rizzo,
*Towards a supersymmetric description of the Fermi galactic center excess*,*JHEP***02**(2015) 057 [arXiv:1409.1573] [INSPIRE].ADSCrossRefGoogle Scholar - [47]K.N. Abazajian, N. Canac, S. Horiuchi, M. Kaplinghat and A. Kwa,
*Discovery of a new galactic center excess consistent with upscattered starlight*, arXiv:1410.6168 [INSPIRE]. - [48]B. Anderson,
*A search for dark matter annihilation in dwarf spheroidal galaxies with Pass 8 data*, talk given at the*5th Fermi Symposium*, Nagoya Japan, 20-24 Oct 2014.Google Scholar - [49]G. Steigman, B. Dasgupta and J.F. Beacom,
*Precise relic WIMP abundance and its impact on searches for dark matter annihilation*,*Phys. Rev.***D 86**(2012) 023506 [arXiv:1204.3622] [INSPIRE].ADSGoogle Scholar - [50]M. Cirelli, D. Gaggero, G. Giesen, M. Taoso and A. Urbano,
*Antiproton constraints on the GeV gamma-ray excess: a comprehensive analysis*,*JCAP***12**(2014) 045 [arXiv:1407.2173] [INSPIRE].ADSCrossRefGoogle Scholar - [51]D. Hooper, T. Linden and P. Mertsch,
*What does the PAMELA antiproton spectrum tell us about dark matter?*,*JCAP***03**(2015) 021 [arXiv:1410.1527] [INSPIRE].ADSCrossRefGoogle Scholar - [52]I. Cholis, D. Hooper and T. Linden,
*A critical reevaluation of radio constraints on annihilating dark matter*, arXiv:1408.6224 [INSPIRE]. - [53]K. Griest and D. Seckel,
*Three exceptions in the calculation of relic abundances*,*Phys. Rev.***D 43**(1991) 3191 [INSPIRE].ADSGoogle Scholar - [54]ATLAS collaboration,
*Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at*\( \sqrt{s} \) = 8*TeV with the ATLAS detector*,*JHEP***11**(2014) 056 [arXiv:1409.6064] [INSPIRE].ADSGoogle Scholar - [55]CMS collaboration,
*Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions*,*JHEP***10**(2014) 160 [arXiv:1408.3316] [INSPIRE]. - [56]CMS collaboration,
*Search for a light pseudoscalar Higgs boson in the dimuon decay channel in pp collisions at*\( \sqrt{s} \) = 7*TeV*,*Phys. Rev. Lett.***109**(2012) 121801 [arXiv:1206.6326] [INSPIRE].ADSCrossRefGoogle Scholar - [57]CMS collaboration,
*Search for a Higgs boson decaying into a b-quark pair and produced in association with b quarks in proton-proton collisions at 7 TeV*,*Phys. Lett.***B 722**(2013) 207 [arXiv:1302.2892] [INSPIRE].ADSGoogle Scholar - [58]ATLAS collaboration,
*Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at*\( \sqrt{s} \) = 8*TeV*,*Phys. Rev. Lett.***113**(2014) 171801 [arXiv:1407.6583] [INSPIRE].ADSCrossRefGoogle Scholar - [59]M. Freytsis and Z. Ligeti,
*On dark matter models with uniquely spin-dependent detection possibilities*,*Phys. Rev.***D 83**(2011) 115009 [arXiv:1012.5317] [INSPIRE].ADSGoogle Scholar - [60]F. Domingo and U. Ellwanger,
*Constraints from the muon g*− 2*on the parameter space of the NMSSM*,*JHEP***07**(2008) 079 [arXiv:0806.0733] [INSPIRE].ADSCrossRefGoogle Scholar - [61]G. Hiller,
*b-physics signals of the lightest CP-odd Higgs boson in the next-to-minimal supersymmetric standard model at large*tan*β*,*Phys. Rev.***D 70**(2004) 034018 [hep-ph/0404220] [INSPIRE].ADSGoogle Scholar - [62]LHCb collaboration,
*Measurement of the B*_{s}^{0}→*μ*^{+}*μ*^{−}*branching fraction and search for B*^{0}→*μ*^{+}*μ*^{−}*decays at the LHCb experiment*,*Phys. Rev. Lett.***111**(2013) 101805 [arXiv:1307.5024] [INSPIRE].CrossRefGoogle Scholar - [63]CMS collaboration,
*Measurement of the B*_{S}^{0}→*μ*^{+}*μ*^{−}*branching fraction and search for B*^{0}→*μ*^{+}*μ*^{−}*with the CMS experiment*,*Phys. Rev. Lett.***111**(2013) 101804 [arXiv:1307.5025] [INSPIRE].ADSCrossRefGoogle Scholar - [64]W. Altmannshofer, M. Carena, N.R. Shah and F. Yu,
*Indirect probes of the MSSM after the Higgs discovery*,*JHEP***01**(2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar - [65]D. Curtin et al.,
*Exotic decays of the 125 GeV Higgs boson*,*Phys. Rev.***D 90**(2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSGoogle Scholar - [66]D. Curtin, R. Essig and Y.-M. Zhong,
*Uncovering light scalars with exotic Higgs decays to*\( b\overline{b}{\mu}^{+}\ {\mu}^{-} \), arXiv:1412.4779 [INSPIRE]. - [67]ATLAS collaboration,
*Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb*^{−1}*of proton-proton collision data*, ATLAS-CONF-2013-034 (2013). - [68]CMS collaboration,
*Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV*, CMS-PAS-HIG-12-045 (2012). - [69]ALEPH collaboration,
*Search for neutral Higgs bosons decaying into four taus at LEP2*,*JHEP***05**(2010) 049 [arXiv:1003.0705] [INSPIRE].Google Scholar - [70]D0 collaboration, V.M. Abazov et al.,
*Search for next-to-minimal supersymmetric Higgs bosons in the h*→*aa*→*μμμμ, μμττ channels using*\( p\overline{p} \)*collisions at*\( \sqrt{s} \) = 1*.*96*TeV*,*Phys. Rev. Lett.***103**(2009) 061801 [arXiv:0905.3381] [INSPIRE].ADSCrossRefGoogle Scholar - [71]B.A. Dobrescu, G.L. Landsberg and K.T. Matchev,
*Higgs boson decays to CP odd scalars at the Tevatron and beyond*,*Phys. Rev.***D 63**(2001) 075003 [hep-ph/0005308] [INSPIRE].ADSGoogle Scholar - [72]R. Dermisek and J.F. Gunion,
*Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and h*→*aa decays*,*Phys. Rev. Lett.***95**(2005) 041801 [hep-ph/0502105] [INSPIRE].ADSCrossRefGoogle Scholar - [73]R. Dermisek and J.F. Gunion,
*Next-to-minimal supersymmetric model solution to the fine-tuning problem, precision electroweak constraints and the largest CERN LEP Higgs event excess*,*Phys. Rev.***D 76**(2007) 095006 [arXiv:0705.4387] [INSPIRE].ADSGoogle Scholar - [74]M. Carena, T. Han, G.-Y. Huang and C.E.M. Wagner,
*Higgs signal for h*→*aa at hadron colliders*,*JHEP***04**(2008) 092 [arXiv:0712.2466] [INSPIRE].ADSCrossRefGoogle Scholar - [75]A. Belyaev, J. Pivarski, A. Safonov, S. Senkin and A. Tatarinov,
*LHC discovery potential of the lightest NMSSM Higgs boson in the h*_{1}→*a*_{1}*a*_{1}→ 4*μ channel*,*Phys. Rev.***D 81**(2010) 075021 [arXiv:1002.1956] [INSPIRE].ADSGoogle Scholar - [76]ALEPH, DELPHI, L3, OPAL and LEP Working Group for Higgs Boson Searches collaborations, S. Schael et al.,
*Search for neutral MSSM Higgs bosons at LEP*,*Eur. Phys. J.***C 47**(2006) 547 [hep-ex/0602042] [INSPIRE].ADSGoogle Scholar - [77]U. Ellwanger, C. Hugonie and A.M. Teixeira,
*The next-to-minimal supersymmetric standard model*,*Phys. Rept.***496**(2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [78]D0 collaboration, V.M. Abazov et al.,
*Search for neutral Higgs bosons at high*tan*β in the b*(*h/H/A*) →*bτ*^{+}*τ*^{−}*channel*,*Phys. Rev. Lett.***102**(2009) 051804 [arXiv:0811.0024] [INSPIRE].ADSCrossRefGoogle Scholar - [79]CDF collaboration, T. Aaltonen et al.,
*Search for Higgs bosons predicted in two-Higgs-doublet models via decays to tau lepton pairs in 1.96 TeV*\( p\overline{p} \)*collisions*,*Phys. Rev. Lett.***103**(2009) 201801 [arXiv:0906.1014] [INSPIRE].ADSCrossRefGoogle Scholar - [80]D0 collaboration, V.M. Abazov et al.,
*Search for neutral Higgs bosons in the multi-b-jet topology in 5.2 fb*^{−1}*of*\( p\overline{p} \)*collisions at*\( \sqrt{s} \) = 1*.*96*TeV*,*Phys. Lett.***B 698**(2011) 97 [arXiv:1011.1931] [INSPIRE].ADSGoogle Scholar - [81]D0 collaboration, V.M. Abazov et al.,
*Search for Higgs bosons decaying to ττ pairs in*\( p\overline{p} \)*collisions at*\( \sqrt{s} \) = 1*.*96*TeV*,*Phys. Lett.***B 707**(2012) 323 [arXiv:1106.4555] [INSPIRE].ADSGoogle Scholar - [82]CDF collaboration, T. Aaltonen et al.,
*Search for Higgs bosons produced in association with b-quarks*,*Phys. Rev.***D 85**(2012) 032005 [arXiv:1106.4782] [INSPIRE].ADSGoogle Scholar - [83]M.M. Almarashi and S. Moretti,
*Scope of Higgs production in association with a bottom quark pair in probing the Higgs sector of the NMSSM at the LHC*, arXiv:1205.1683 [INSPIRE]. - [84]M.M. Almarashi and S. Moretti,
*Low mass Higgs signals at the LHC in the next-to-minimal supersymmetric standard model*,*Eur. Phys. J.***C 71**(2011) 1618 [arXiv:1011.6547] [INSPIRE].ADSCrossRefGoogle Scholar - [85]M.M. Almarashi and S. Moretti,
*Muon signals of very light CP-odd Higgs states of the NMSSM at the LHC*,*Phys. Rev.***D 83**(2011) 035023 [arXiv:1101.1137] [INSPIRE].ADSGoogle Scholar - [86]M.M. Almarashi and S. Moretti,
*Very light CP-odd Higgs bosons of the NMSSM at the LHC in 4b-quark final states*,*Phys. Rev.***D 84**(2011) 015014 [arXiv:1105.4191] [INSPIRE].ADSGoogle Scholar - [87]N.-E. Bomark, S. Moretti, S. Munir and L. Roszkowski,
*A light NMSSM pseudoscalar Higgs boson at the LHC redux*,*JHEP***02**(2015) 044 [arXiv:1409.8393] [INSPIRE].ADSCrossRefGoogle Scholar - [88]S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz,
*Discovery prospects for NMSSM Higgs bosons at the high-energy Large Hadron Collider*,*Phys. Rev.***D 90**(2014) 095014 [arXiv:1408.1120] [INSPIRE].ADSGoogle Scholar - [89]I. Hoenig, G. Samach and D. Tucker-Smith,
*Searching for dilepton resonances below the Z mass at the LHC*,*Phys. Rev.***D 90**(2014) 075016 [arXiv:1408.1075] [INSPIRE].ADSGoogle Scholar - [90]A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks,
*FeynRules 2.0*—*a complete toolbox for tree-level phenomenology*,*Comput. Phys. Commun.***185**(2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar - [91]J. Alwall et al.,
*The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations*,*JHEP***07**(2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar - [92]T. Sjöstrand, S. Mrenna and P.Z. Skands,
*PYTHIA 6.4 physics and manual*,*JHEP***05**(2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [93]DELPHES 3 collaboration, J. de Favereau et al.,
*DELPHES 3: a modular framework for fast simulation of a generic collider experiment*,*JHEP***02**(2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar - [94]R.M. Barnett, H.E. Haber and D.E. Soper,
*Ultraheavy particle production from heavy partons at hadron colliders*,*Nucl. Phys.***B 306**(1988) 697 [INSPIRE].ADSCrossRefGoogle Scholar - [95]F.I. Olness and W.-K. Tung,
*When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD based parton model*,*Nucl. Phys.***B 308**(1988) 813 [INSPIRE].ADSCrossRefGoogle Scholar - [96]D.A. Dicus and S. Willenbrock,
*Higgs boson production from heavy quark fusion*,*Phys. Rev.***D 39**(1989) 751 [INSPIRE].ADSGoogle Scholar - [97]D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock,
*Higgs boson production in association with bottom quarks at next-to-leading order*,*Phys. Rev.***D 59**(1999) 094016 [hep-ph/9811492] [INSPIRE].ADSGoogle Scholar - [98]J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock,
*Higgs-boson production in association with a single bottom quark*,*Phys. Rev.***D 67**(2003) 095002 [hep-ph/0204093] [INSPIRE].ADSGoogle Scholar - [99]E. Boos and T. Plehn,
*Higgs boson production induced by bottom quarks*,*Phys. Rev.***D 69**(2004) 094005 [hep-ph/0304034] [INSPIRE].ADSGoogle Scholar - [100]S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth,
*Exclusive Higgs boson production with bottom quarks at hadron colliders*,*Phys. Rev.***D 69**(2004) 074027 [hep-ph/0311067] [INSPIRE].ADSGoogle Scholar - [101]J.M. Campbell et al.,
*Higgs boson production in association with bottom quarks*, hep-ph/0405302 [INSPIRE]. - [102]S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth,
*Higgs boson production with one bottom quark jet at hadron colliders*,*Phys. Rev. Lett.***94**(2005) 031802 [hep-ph/0408077] [INSPIRE].ADSCrossRefGoogle Scholar - [103]S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth,
*Higgs production in association with bottom quarks at hadron colliders*,*Mod. Phys. Lett.***A 21**(2006) 89 [hep-ph/0508293] [INSPIRE].ADSCrossRefGoogle Scholar - [104]M. Wiesemann et al.,
*Higgs production in association with bottom quarks*,*JHEP***02**(2015) 132 [arXiv:1409.5301] [INSPIRE].ADSCrossRefGoogle Scholar - [105]F. Maltoni, Z. Sullivan and S. Willenbrock,
*Higgs-boson production via bottom-quark fusion*,*Phys. Rev.***D 67**(2003) 093005 [hep-ph/0301033] [INSPIRE].ADSGoogle Scholar - [106]R.V. Harlander and W.B. Kilgore,
*Higgs boson production in bottom quark fusion at next-to-next-to leading order*,*Phys. Rev.***D 68**(2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar - [107]F. Maltoni, G. Ridolfi and M. Ubiali,
*b-initiated processes at the LHC: a reappraisal*,*JHEP***07**(2012) 022 [*Erratum ibid.***04**(2013) 095] [arXiv:1203.6393] [INSPIRE]. - [108]J.M. Campbell and R.K. Ellis,
*MCFM for the Tevatron and the LHC*,*Nucl. Phys. Proc. Suppl.***205-206**(2010) 10 [arXiv:1007.3492] [INSPIRE].ADSCrossRefGoogle Scholar - [109]J. Cao, L. Shang, P. Wu, J.M. Yang and Y. Zhang,
*Supersymmetry explanation of the Fermi galactic center excess and its test at LHC run II*,*Phys. Rev.***D 91**(2015) 055005 [arXiv:1410.3239] [INSPIRE].ADSGoogle Scholar - [110]U. Ellwanger, J.F. Gunion and C. Hugonie,
*NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM*,*JHEP***02**(2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar - [111]U. Ellwanger and C. Hugonie,
*NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM*,*Comput. Phys. Commun.***175**(2006) 290 [hep-ph/0508022] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [112]G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov,
*Relic density of dark matter in the NMSSM*,*JCAP***09**(2005) 001 [hep-ph/0505142] [INSPIRE].CrossRefGoogle Scholar - [113]G. Bélanger et al.,
*Indirect search for dark matter with MicrOMEGAs 2.4*,*Comput. Phys. Commun.***182**(2011) 842 [arXiv:1004.1092] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [114]G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov,
*MicrOMEGAs 3: a program for calculating dark matter observables*,*Comput. Phys. Commun.***185**(2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar