Advertisement

Extending LHC coverage to light pseudoscalar mediators and coy dark sectors

Open Access
Regular Article - Theoretical Physics

Abstract

Many dark matter models involving weakly interacting massive particles (WIMPs) feature new, relatively light pseudoscalars that mediate dark matter pair annihilation into Standard Model fermions. In particular, simple models of this type can explain the gamma ray excess originating in the Galactic Center as observed by the Fermi Large Area Telescope. In many cases the pseudoscalar’s branching ratio into WIMPs is suppressed, making these states challenging to detect at colliders through standard dark matter searches. Here, we study the prospects for observing these light mediator states at the LHC without exploiting missing energy techniques. While existing searches effectively probe pseudoscalars with masses between 5-14 GeV and above 90 GeV, the LHC reach can be extended to cover much of the interesting parameter space in the intermediate 20-80 GeV mass range in which the mediator can have appreciable Yukawa-like couplings to Standard Model fermions but would have escaped detection by LEP and other experiments. Models explaining the Galactic Center excess via a light pseudoscalar mediator can give rise to a promising signal in this regime through the associated production of the mediator with bottom quarks while satisfying all other existing constraints. We perform an analysis of the backgrounds and trigger efficiencies, detailing the cuts that can be used to extract the signal. A significant portion of the otherwise unconstrained parameter space of these models can be conclusively tested at the 13 TeV LHC with 100 fb−1, and we encourage the ATLAS and CMS collaborations to extend their existing searches to this mass range.

Keywords

Supersymmetry Phenomenology Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner Milky Way from the Fermi Gamma Ray Space Telescope, arXiv:0910.2998 [INSPIRE].
  2. [2]
    D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Boyarsky, D. Malyshev and O. Ruchayskiy, A comment on the emission from the galactic center as seen by the Fermi telescope, Phys. Lett. B 705 (2011) 165 [arXiv:1012.5839] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar
  5. [5]
    K.N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].
  6. [6]
    D. Hooper and T.R. Slatyer, Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating dark matter, Phys. Dark Univ. 2 (2013) 118 [arXiv:1302.6589] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    C. Gordon and O. Macias, Dark matter and pulsar model constraints from galactic center Fermi-LAT gamma ray observations, Phys. Rev. D 88 (2013) 083521 [Erratum ibid. D 89 (2014) 049901] [arXiv:1306.5725] [INSPIRE].
  8. [8]
    K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat, Astrophysical and dark matter interpretations of extended gamma-ray emission from the galactic center, Phys. Rev. D 90 (2014) 023526 [arXiv:1402.4090] [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Daylan et al., The characterization of the gamma-ray signal from the central Milky Way: a compelling case for annihilating dark matter, arXiv:1402.6703 [INSPIRE].
  10. [10]
    B. Zhou et al., GeV excess in the Milky Way: depending on diffuse galactic gamma ray emission template?, arXiv:1406.6948 [INSPIRE].
  11. [11]
    F. Calore, I. Cholis and C. Weniger, Background model systematics for the Fermi GeV excess, arXiv:1409.0042 [INSPIRE].
  12. [12]
    P. Agrawal, B. Batell, P.J. Fox and R. Harnik, WIMPs at the galactic center, arXiv:1411.2592 [INSPIRE].
  13. [13]
    I. Cholis, D. Hooper and T. Linden, Challenges in explaining the galactic center gamma-ray excess with millisecond pulsars, arXiv:1407.5625 [INSPIRE].
  14. [14]
    C. Boehm, M.J. Dolan, C. McCabe, M. Spannowsky and C.J. Wallace, Extended gamma-ray emission from coy dark matter, JCAP 05 (2014) 009 [arXiv:1401.6458] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Ipek, D. McKeen and A.E. Nelson, A renormalizable model for the galactic center gamma ray excess from dark matter annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Cheung, M. Papucci, D. Sanford, N.R. Shah and K.M. Zurek, NMSSM interpretation of the galactic center excess, Phys. Rev. D 90 (2014) 075011 [arXiv:1406.6372] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Guo, J. Li, T. Li and A.G. Williams, NMSSM explanations of the galactic gamma ray excess and promising LHC searches, arXiv:1409.7864 [INSPIRE].
  18. [18]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  19. [19]
    B. Batell, M. Pospelov and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, Phys. Rev. D 83 (2011) 054005 [arXiv:0911.4938] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Mimasu and V. Sanz, ALPs at colliders, arXiv:1409.4792 [INSPIRE].
  21. [21]
    M.J. Dolan, C. McCabe, F. Kahlhoefer and K. Schmidt-Hoberg, A taste of dark matter: flavour constraints on pseudoscalar mediators, arXiv:1412.5174 [INSPIRE].
  22. [22]
    E. Izaguirre, G. Krnjaic and B. Shuve, The galactic center excess from the bottom up, Phys. Rev. D 90 (2014) 055002 [arXiv:1404.2018] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Kozaczuk and S. Profumo, Light NMSSM neutralino dark matter in the wake of CDMS II and a 126 GeV Higgs boson, Phys. Rev. D 89 (2014) 095012 [arXiv:1308.5705] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Ghorbani, Fermionic dark matter with pseudo-scalar Yukawa interaction, JCAP 01 (2015) 015 [arXiv:1408.4929] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Arina, E. Del Nobile and P. Panci, Dark matter with pseudoscalar-mediated interactions explains the DAMA signal and the galactic center excess, Phys. Rev. Lett. 114 (2015) 011301 [arXiv:1406.5542] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Hektor and L. Marzola, Coy dark matter and the anomalous magnetic moment, Phys. Rev. D 90 (2014) 053007 [arXiv:1403.3401] [INSPIRE].ADSGoogle Scholar
  29. [29]
    SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    CRESST-II collaboration, G. Angloher et al., Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 (2014) 3184 [arXiv:1407.3146] [INSPIRE].Google Scholar
  33. [33]
    ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Berlin, D. Hooper and S.D. McDermott, Simplified dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Hooper, Z mediated dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 91 (2015) 035025 [arXiv:1411.4079] [INSPIRE].ADSGoogle Scholar
  37. [37]
    C. Boehm, M.J. Dolan and C. McCabe, A weighty interpretation of the galactic centre excess, Phys. Rev. D 90 (2014) 023531 [arXiv:1404.4977] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Abdullah et al., Hidden on-shell mediators for the galactic center γ-ray excess, Phys. Rev. D 90 (2014) 035004 [arXiv:1404.6528] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Martin, J. Shelton and J. Unwin, Fitting the galactic center gamma-ray excess with cascade annihilations, Phys. Rev. D 90 (2014) 103513 [arXiv:1405.0272] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Berlin, P. Gratia, D. Hooper and S.D. McDermott, Hidden sector dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 90 (2014) 015032 [arXiv:1405.5204] [INSPIRE].ADSGoogle Scholar
  41. [41]
    P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP 09 (2014) 013 [arXiv:1404.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D.G. Cerdeno, M. Peiro and S. Robles, Fits to the Fermi-LAT GeV excess with RH sneutrino dark matter: implications for direct and indirect dark matter searches and the LHC, arXiv:1501.01296 [INSPIRE].
  43. [43]
    A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd, Effective field theory approach to the galactic center gamma-ray excess, Phys. Rev. D 90 (2014) 115003 [arXiv:1403.5027] [INSPIRE].ADSGoogle Scholar
  44. [44]
    P. Agrawal, B. Batell, D. Hooper and T. Lin, Flavored dark matter and the galactic center gamma-ray excess, Phys. Rev. D 90 (2014) 063512 [arXiv:1404.1373] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Huang, T. Liu, L.-T. Wang and F. Yu, Supersymmetric subelectroweak scale dark matter, the galactic center gamma-ray excess and exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 115006 [arXiv:1407.0038] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Cahill-Rowley, J. Gainer, J. Hewett and T. Rizzo, Towards a supersymmetric description of the Fermi galactic center excess, JHEP 02 (2015) 057 [arXiv:1409.1573] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K.N. Abazajian, N. Canac, S. Horiuchi, M. Kaplinghat and A. Kwa, Discovery of a new galactic center excess consistent with upscattered starlight, arXiv:1410.6168 [INSPIRE].
  48. [48]
    B. Anderson, A search for dark matter annihilation in dwarf spheroidal galaxies with Pass 8 data, talk given at the 5th Fermi Symposium, Nagoya Japan, 20-24 Oct 2014.Google Scholar
  49. [49]
    G. Steigman, B. Dasgupta and J.F. Beacom, Precise relic WIMP abundance and its impact on searches for dark matter annihilation, Phys. Rev. D 86 (2012) 023506 [arXiv:1204.3622] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Cirelli, D. Gaggero, G. Giesen, M. Taoso and A. Urbano, Antiproton constraints on the GeV gamma-ray excess: a comprehensive analysis, JCAP 12 (2014) 045 [arXiv:1407.2173] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Hooper, T. Linden and P. Mertsch, What does the PAMELA antiproton spectrum tell us about dark matter?, JCAP 03 (2015) 021 [arXiv:1410.1527] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    I. Cholis, D. Hooper and T. Linden, A critical reevaluation of radio constraints on annihilating dark matter, arXiv:1408.6224 [INSPIRE].
  53. [53]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  54. [54]
    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].ADSGoogle Scholar
  55. [55]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
  56. [56]
    CMS collaboration, Search for a light pseudoscalar Higgs boson in the dimuon decay channel in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 109 (2012) 121801 [arXiv:1206.6326] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    CMS collaboration, Search for a Higgs boson decaying into a b-quark pair and produced in association with b quarks in proton-proton collisions at 7 TeV, Phys. Lett. B 722 (2013) 207 [arXiv:1302.2892] [INSPIRE].ADSGoogle Scholar
  58. [58]
    ATLAS collaboration, Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev. D 83 (2011) 115009 [arXiv:1012.5317] [INSPIRE].ADSGoogle Scholar
  60. [60]
    F. Domingo and U. Ellwanger, Constraints from the muon g − 2 on the parameter space of the NMSSM, JHEP 07 (2008) 079 [arXiv:0806.0733] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G. Hiller, b-physics signals of the lightest CP-odd Higgs boson in the next-to-minimal supersymmetric standard model at large tan β, Phys. Rev. D 70 (2004) 034018 [hep-ph/0404220] [INSPIRE].ADSGoogle Scholar
  62. [62]
    LHCb collaboration, Measurement of the B s0 → μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    CMS collaboration, Measurement of the B S0 → μ + μ branching fraction and search for B 0μ + μ with the CMS experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSGoogle Scholar
  66. [66]
    D. Curtin, R. Essig and Y.-M. Zhong, Uncovering light scalars with exotic Higgs decays to \( b\overline{b}{\mu}^{+}\ {\mu}^{-} \), arXiv:1412.4779 [INSPIRE].
  67. [67]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  68. [68]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
  69. [69]
    ALEPH collaboration, Search for neutral Higgs bosons decaying into four taus at LEP2, JHEP 05 (2010) 049 [arXiv:1003.0705] [INSPIRE].Google Scholar
  70. [70]
    D0 collaboration, V.M. Abazov et al., Search for next-to-minimal supersymmetric Higgs bosons in the haaμμμμ, μμττ channels using \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. Lett. 103 (2009) 061801 [arXiv:0905.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    B.A. Dobrescu, G.L. Landsberg and K.T. Matchev, Higgs boson decays to CP odd scalars at the Tevatron and beyond, Phys. Rev. D 63 (2001) 075003 [hep-ph/0005308] [INSPIRE].ADSGoogle Scholar
  72. [72]
    R. Dermisek and J.F. Gunion, Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and haa decays, Phys. Rev. Lett. 95 (2005) 041801 [hep-ph/0502105] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Dermisek and J.F. Gunion, Next-to-minimal supersymmetric model solution to the fine-tuning problem, precision electroweak constraints and the largest CERN LEP Higgs event excess, Phys. Rev. D 76 (2007) 095006 [arXiv:0705.4387] [INSPIRE].ADSGoogle Scholar
  74. [74]
    M. Carena, T. Han, G.-Y. Huang and C.E.M. Wagner, Higgs signal for haa at hadron colliders, JHEP 04 (2008) 092 [arXiv:0712.2466] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A. Belyaev, J. Pivarski, A. Safonov, S. Senkin and A. Tatarinov, LHC discovery potential of the lightest NMSSM Higgs boson in the h 1a 1 a 1 → 4μ channel, Phys. Rev. D 81 (2010) 075021 [arXiv:1002.1956] [INSPIRE].ADSGoogle Scholar
  76. [76]
    ALEPH, DELPHI, L3, OPAL and LEP Working Group for Higgs Boson Searches collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSGoogle Scholar
  77. [77]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    D0 collaboration, V.M. Abazov et al., Search for neutral Higgs bosons at high tan β in the b(h/H/A) → + τ channel, Phys. Rev. Lett. 102 (2009) 051804 [arXiv:0811.0024] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    CDF collaboration, T. Aaltonen et al., Search for Higgs bosons predicted in two-Higgs-doublet models via decays to tau lepton pairs in 1.96 TeV \( p\overline{p} \) collisions, Phys. Rev. Lett. 103 (2009) 201801 [arXiv:0906.1014] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    D0 collaboration, V.M. Abazov et al., Search for neutral Higgs bosons in the multi-b-jet topology in 5.2 fb −1 of \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Lett. B 698 (2011) 97 [arXiv:1011.1931] [INSPIRE].ADSGoogle Scholar
  81. [81]
    D0 collaboration, V.M. Abazov et al., Search for Higgs bosons decaying to ττ pairs in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Lett. B 707 (2012) 323 [arXiv:1106.4555] [INSPIRE].ADSGoogle Scholar
  82. [82]
    CDF collaboration, T. Aaltonen et al., Search for Higgs bosons produced in association with b-quarks, Phys. Rev. D 85 (2012) 032005 [arXiv:1106.4782] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M.M. Almarashi and S. Moretti, Scope of Higgs production in association with a bottom quark pair in probing the Higgs sector of the NMSSM at the LHC, arXiv:1205.1683 [INSPIRE].
  84. [84]
    M.M. Almarashi and S. Moretti, Low mass Higgs signals at the LHC in the next-to-minimal supersymmetric standard model, Eur. Phys. J. C 71 (2011) 1618 [arXiv:1011.6547] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M.M. Almarashi and S. Moretti, Muon signals of very light CP-odd Higgs states of the NMSSM at the LHC, Phys. Rev. D 83 (2011) 035023 [arXiv:1101.1137] [INSPIRE].ADSGoogle Scholar
  86. [86]
    M.M. Almarashi and S. Moretti, Very light CP-odd Higgs bosons of the NMSSM at the LHC in 4b-quark final states, Phys. Rev. D 84 (2011) 015014 [arXiv:1105.4191] [INSPIRE].ADSGoogle Scholar
  87. [87]
    N.-E. Bomark, S. Moretti, S. Munir and L. Roszkowski, A light NMSSM pseudoscalar Higgs boson at the LHC redux, JHEP 02 (2015) 044 [arXiv:1409.8393] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Discovery prospects for NMSSM Higgs bosons at the high-energy Large Hadron Collider, Phys. Rev. D 90 (2014) 095014 [arXiv:1408.1120] [INSPIRE].ADSGoogle Scholar
  89. [89]
    I. Hoenig, G. Samach and D. Tucker-Smith, Searching for dilepton resonances below the Z mass at the LHC, Phys. Rev. D 90 (2014) 075016 [arXiv:1408.1075] [INSPIRE].ADSGoogle Scholar
  90. [90]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  93. [93]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3: a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar
  94. [94]
    R.M. Barnett, H.E. Haber and D.E. Soper, Ultraheavy particle production from heavy partons at hadron colliders, Nucl. Phys. B 306 (1988) 697 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    F.I. Olness and W.-K. Tung, When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD based parton model, Nucl. Phys. B 308 (1988) 813 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    D.A. Dicus and S. Willenbrock, Higgs boson production from heavy quark fusion, Phys. Rev. D 39 (1989) 751 [INSPIRE].ADSGoogle Scholar
  97. [97]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].ADSGoogle Scholar
  98. [98]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs-boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [INSPIRE].ADSGoogle Scholar
  99. [99]
    E. Boos and T. Plehn, Higgs boson production induced by bottom quarks, Phys. Rev. D 69 (2004) 094005 [hep-ph/0304034] [INSPIRE].ADSGoogle Scholar
  100. [100]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].ADSGoogle Scholar
  101. [101]
    J.M. Campbell et al., Higgs boson production in association with bottom quarks, hep-ph/0405302 [INSPIRE].
  102. [102]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Higgs boson production with one bottom quark jet at hadron colliders, Phys. Rev. Lett. 94 (2005) 031802 [hep-ph/0408077] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Higgs production in association with bottom quarks at hadron colliders, Mod. Phys. Lett. A 21 (2006) 89 [hep-ph/0508293] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M. Wiesemann et al., Higgs production in association with bottom quarks, JHEP 02 (2015) 132 [arXiv:1409.5301] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].ADSGoogle Scholar
  106. [106]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  107. [107]
    F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].
  108. [108]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    J. Cao, L. Shang, P. Wu, J.M. Yang and Y. Zhang, Supersymmetry explanation of the Fermi galactic center excess and its test at LHC run II, Phys. Rev. D 91 (2015) 055005 [arXiv:1410.3239] [INSPIRE].ADSGoogle Scholar
  110. [110]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  112. [112]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].CrossRefGoogle Scholar
  113. [113]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs 2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  114. [114]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.TRIUMFVancouverCanada

Personalised recommendations