String field theory vertex from integrability

Open Access
Regular Article - Theoretical Physics


We propose a framework for computing the (light cone) string field theory vertex in the case when the string worldsheet QFT is a generic integrable theory. The prime example and ultimate goal would be the AdS5 × S5 superstring theory cubic string vertex and the chief application will be to use this framework as a formulation for \( \mathcal{N}=4 \) SYM theory OPE coefficients valid at any coupling up to wrapping corrections. In this paper we propose integrability axioms for the vertex, illustrate them on the example of the pp-wave string field theory and also uncover similar structures in weak coupling computations of OPE coefficients.


AdS-CFT Correspondence Integrable Field Theories String Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012)3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    G. Arutyunov and S. Frolov, String hypothesis for the AdS 5 × S 5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N =4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar AdS/CFT: A Proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  6. [6]
    J. Balog and A. Hegedus, Hybrid-NLIE for the AdS/CFT spectral problem, JHEP 08 (2012) 022 [arXiv:1202.3244] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \( \mathcal{N}=4 \) super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CFT 4, arXiv:1405.4857 [INSPIRE].
  9. [9]
    N.R. Constable et al., PP wave string interactions from perturbative Yang-Mills theory, JHEP 07 (2002) 017 [hep-th/0205089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Beisert, C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, BMN correlators and operator mixing in N = 4 super Yang-Mills theory, Nucl. Phys. B 650 (2003) 125 [hep-th/0208178] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    L.F. Alday, J.R. David, E. Gava and K.S. Narain, Structure constants of planar N = 4 Yang-Mills at one loop, JHEP 09 (2005) 070 [hep-th/0502186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    L.F. Alday, J.R. David, E. Gava and K.S. Narain, Towards a string bit formulation of N = 4 super Yang-Mills, JHEP 04 (2006) 014 [hep-th/0510264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021][INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Spradlin and A. Volovich, Superstring interactions in a pp wave background, Phys. Rev. D 66 (2002) 086004 [hep-th/0204146] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    A. Pankiewicz and B. Stefanski Jr., PP wave light cone superstring field theory, Nucl. Phys. B 657 (2003) 79 [hep-th/0210246] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    C.-S. Chu and V.V. Khoze, Correspondence between the three point BMN correlators and the three string vertex on the pp wave, JHEP 04 (2003) 014 [hep-th/0301036] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Di Vecchia, J.L. Petersen, M. Petrini, R. Russo and A. Tanzini, The three string vertex and the AdS/CFT duality in the PP wave limit, Class. Quant. Grav. 21 (2004) 2221 [hep-th/0304025] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Dobashi and T. Yoneya, Resolving the holography in the plane-wave limit of AdS/CFT correspondence, Nucl. Phys. B 711 (2005) 3 [hep-th/0406225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    H. Shimada, Holography at string field theory level: Conformal three point functions of BMN operators, Phys. Lett. B 647 (2007) 211 [hep-th/0410049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    R.R. Metsaev and A.A. Tseytlin, Exactly solvable model of superstring in Ramond-Ramond plane wave background, Phys. Rev. D 65 (2002) 126004 [hep-th/0202109] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M.B. Green, J.H. Schwarz and L. Brink, Superfield Theory of Type II Superstrings, Nucl. Phys. B 219 (1983) 437 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s Matrices in Two-Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys. 120 (1979) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Mussardo, Off critical statistical models: Factorized scattering theories and bootstrap program, Phys. Rept. 218 (1992) 215 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Dorey, Exact S matrices, hep-th/9810026 [INSPIRE].
  25. [25]
    A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three State Potts and Lee-yang Models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639 [hep-th/9607167] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841 [Erratum ibid. A 9 (1994) 4353] [hep-th/9306002] [INSPIRE].
  28. [28]
    G. Delfino, G. Mussardo and P. Simonetti, Statistical models with a line of defect, Phys. Lett. B 328 (1994) 123 [hep-th/9403049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Karowski and P. Weisz, Exact Form-Factors in (1+1)-Dimensional Field Theoretic Models with Soliton Behavior, Nucl. Phys. B 139 (1978) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F.A. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys. 14 (1992) 1.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    H.M. Babujian, A. Fring, M. Karowski and A. Zapletal, Exact form-factors in integrable quantum field theories: The sine-Gordon model, Nucl. Phys. B 538 (1999) 535 [hep-th/9805185] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R.A. Janik and A. Wereszczynski, Correlation functions of three heavy operators: The AdS contribution, JHEP 12 (2011) 095 [arXiv:1109.6262] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    Y. Kazama and S. Komatsu, On holographic three point functions for GKP strings from integrability, JHEP 01 (2012) 110 [Erratum ibid. 1206 (2012) 150] [arXiv:1110.3949] [INSPIRE].
  35. [35]
    Y. Kazama and S. Komatsu, Wave functions and correlation functions for GKP strings from integrability, JHEP 09 (2012) 022 [arXiv:1205.6060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Y. Kazama and S. Komatsu, Three-point functions in the SU(2) sector at strong coupling, JHEP 03 (2014) 052 [arXiv:1312.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N =4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    D. Bombardelli, A next-to-leading Lüscher formula, JHEP 01 (2014) 037 [arXiv:1309.4083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    Z. Bajnok, The formfactor bootstrap, talk at Nordita Workshop: Exact Results in Gauge-String Dualities, Nordita, Stockholm, 6-10 February 2012.Google Scholar
  42. [42]
    T. Klose and T. McLoughlin, Worldsheet Form Factors in AdS/CFT, Phys. Rev. D 87 (2013) 026004 [arXiv:1208.2020] [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Klose and T. McLoughlin, Comments on World-Sheet Form Factors in AdS/CFT, J. Phys. A 47 (2014) 055401 [arXiv:1307.3506] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  44. [44]
    Z. Bajnok, R.A. Janik and A. Wereszczynski, HHL correlators, orbit averaging and form factors, JHEP 09 (2014) 050 [arXiv:1404.4556] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.B. Zamolodchikov, Two point correlation function in scaling Lee-Yang model, Nucl. Phys. B 348 (1991) 619 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    A. Fring, G. Mussardo and P. Simonetti, Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory, Nucl. Phys. B 393 (1993) 413 [hep-th/9211053] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    B. Pozsgay and G. Takács, Form-factors in finite volume I: Form-factor bootstrap and truncated conformal space, Nucl. Phys. B 788 (2008) 167 [arXiv:0706.1445] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 09 (2010) 030 [arXiv:1008.1059] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    Z. Bajnok and R.A. Janik, HHL correlators and diagonal form factors, to appear.Google Scholar
  51. [51]
    W. Schulgin and A.V. Zayakin, Three-BMN Correlation Functions: Integrability vs. String Field Theory. One-Loop Mismatch, JHEP 10 (2013) 053 [arXiv:1305.3198] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J. Lucietti, S. Schäfer-Nameki and A. Sinha, On the plane wave cubic vertex, Phys. Rev. D 70 (2004) 026005 [hep-th/0402185] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    Y.-H. He, J.H. Schwarz, M. Spradlin and A. Volovich, Explicit formulas for Neumann coefficients in the plane wave geometry, Phys. Rev. D 67 (2003) 086005 [hep-th/0211198] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, Crossing Symmetry and Duality of the S-matrix in large-N Chern-Simons theories with fundamental matter, arXiv:1404.6373 [INSPIRE].
  55. [55]
    Y. Dandekar, M. Mandlik and S. Minwalla, Poles in the S-Matrix of Relativistic Chern-Simons Matter theories from Quantum Mechanics, arXiv:1407.1322 [INSPIRE].
  56. [56]
    V.P. Yurov and A.B. Zamolodchikov, Correlation functions of integrable 2 − D models of relativistic field theory. Ising model, Int. J. Mod. Phys. A 6 (1991) 3419 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    J. Caetano and T. Fleury, Three-point functions and su (1|1) spin chains, JHEP 09 (2014) 173 [arXiv:1404.4128] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    N. Gromov and P. Vieira, Tailoring Three-Point Functions and Integrability IV. Theta-morphism, JHEP 04 (2014) 068 [arXiv:1205.5288] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  59. [59]
    J.H. Schwarz, Comments on superstring interactions in a plane wave background, JHEP 09 (2002) 058 [hep-th/0208179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    Y. Kazama, S. Komatsu and T. Nishimura, Novel construction and the monodromy relation for three-point functions at weak coupling, JHEP 01 (2015) 095 [arXiv:1410.8533] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Y. Jiang, I. Kostov, A. Petrovskii and D. Serban, String Bits and the Spin Vertex, arXiv:1410.8860 [INSPIRE].
  62. [62]
    Y. Jiang and A. Petrovskii, From Spin Vertex to String Vertex, arXiv:1412.2256 [INSPIRE].
  63. [63]
    T. Klose and T. McLoughlin, A light-cone approach to three-point functions in AdS 5 × S 5, JHEP 04 (2012) 080 [arXiv:1106.0495] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.MTA Lendület Holographic QFT GroupWigner Research CentreBudapest 114Hungary
  2. 2.Institute of PhysicsJagiellonian UniversityKrakówPoland

Personalised recommendations