Conformal perturbation theory and higher spin entanglement entropy on the torus

Open Access
Regular Article - Theoretical Physics

Abstract

We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential μ, the deformation is related at high temperatures to a higher spin black hole in hs[0] theory on AdS3 spacetime. We calculate the order μ2 corrections to the single interval Rényi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order μ2 corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Rényi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Rényi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.

Keywords

Field Theories in Lower Dimensions AdS-CFT Correspondence Conformal and W Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetMATHGoogle Scholar
  6. [6]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].
  8. [8]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393] [INSPIRE].
  9. [9]
    P. Calabrese and J.L. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetMATHGoogle Scholar
  10. [10]
    J.L. Cardy and P. Calabrese, Unusual Corrections to Scaling in Entanglement Entropy, J. Stat. Mech. (2010) P04023 [arXiv:1002.4353] [INSPIRE].
  11. [11]
    M.R. Douglas, Conformal field theory techniques in large-N Yang-Mills theory, hep-th/9311130 [INSPIRE].
  12. [12]
    R. Dijkgraaf, Chiral deformations of conformal field theories, Nucl. Phys. B 493 (1997) 588 [hep-th/9609022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M.R. Gaberdiel, T. Hartman and K. Jin, Higher Spin Black Holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: A review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  18. [18]
    M.R. Gaberdiel, K. Jin and E. Perlmutter, Probing higher spin black holes from CFT, JHEP 10 (2013) 045 [arXiv:1307.2221] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  25. [25]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP 06 (2014) 096 [arXiv:1402.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Universal correction to higher spin entanglement entropy, Phys. Rev. D 90 (2014) 041903 [arXiv:1405.0015] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. de Boer and J.I. Jottar, Entanglement Entropy and Higher Spin Holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    M. Ammon, A. Castro and N. Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin Gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    S. Datta, Relative entropy in higher spin holography, Phys. Rev. D 90 (2014) 126010 [arXiv:1406.0520] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Castro and E. Llabrés, Unravelling Holographic Entanglement Entropy in Higher Spin Theories, JHEP 03 (2015) 124 [arXiv:1410.2870] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    J. Long, Higher Spin Entanglement Entropy, JHEP 12 (2014) 055 [arXiv:1408.1298] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Chen, J. Long and J.-j. Zhang, Holographic Rényi entropy for CFT with W symmetry, JHEP 04 (2014) 041 [arXiv:1312.5510] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.N. Pope, L.J. Romans and X. Shen, The Complete Structure of W(Infinity), Phys. Lett. B 236 (1990) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E. Bergshoeff, C.N. Pope, L.J. Romans, E. Sezgin and X. Shen, The Super W Algebra, Phys. Lett. B 245 (1990) 447 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    C.N. Pope, Lectures on W algebras and W gravity, hep-th/9112076 [INSPIRE].
  36. [36]
    I. Bakas and E. Kiritsis, Bosonic Realization of a Universal W Algebra and Z(infinity) Parafermions, Nucl. Phys. B 343 (1990) 185 [Erratum ibid. B 350 (1991) 512] [INSPIRE].
  37. [37]
    J. de Boer and J.I. Jottar, Boundary Conditions and Partition Functions in Higher Spin AdS 3 /CFT 2, arXiv:1407.3844 [INSPIRE].
  38. [38]
    M. Henneaux and S.-J. Rey, Nonlinear W as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Semi-classical unitarity in 3-dimensional higher-spin gravity for non-principal embeddings, Class. Quant. Grav. 30 (2013) 104004 [arXiv:1211.4454] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D, JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Ferlaino, T. Hollowood and S.P. Kumar, Asymptotic symmetries and thermodynamics of higher spin black holes in AdS3, Phys. Rev. D 88 (2013) 066010 [arXiv:1305.2011] [INSPIRE].ADSGoogle Scholar
  44. [44]
    G. Compére, J.I. Jottar and W. Song, Observables and Microscopic Entropy of Higher Spin Black Holes, JHEP 11 (2013) 054 [arXiv:1308.2175] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Compére and W. Song, \( \mathcal{W} \) symmetry and integrability of higher spin black holes, JHEP 09 (2013) 144 [arXiv:1306.0014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: Black holes, global charges and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    A. Perez, D. Tempo and R. Troncoso, Higher spin black hole entropy in three dimensions, JHEP 04 (2013) 143 [arXiv:1301.0847] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].CrossRefMATHGoogle Scholar
  50. [50]
    T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  51. [51]
    T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].MathSciNetMATHGoogle Scholar
  52. [52]
    S. Datta and J.R. David, Rényi entropies of free bosons on the torus and holography, JHEP 04 (2014) 081 [arXiv:1311.1218] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York, U.S.A. (1997), pg. 890.CrossRefMATHGoogle Scholar
  54. [54]
    N.J. Iles and G.M.T. Watts, Modular properties of characters of the W3 algebra, arXiv:1411.4039 [INSPIRE].
  55. [55]
    C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Cambridge University Press, Cambridge, U.K. (1989).CrossRefMATHGoogle Scholar
  56. [56]
    M.R. Gaberdiel, K. Jin and W. Li, Perturbations of W CFTs, JHEP 10 (2013) 162 [arXiv:1307.4087] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, U.K. (1927).MATHGoogle Scholar
  58. [58]
    L. Griguolo, D. Seminara and R.J. Szabo, Two-dimensional Yang-Mills theory and moduli spaces of holomorphic differentials, Phys. Lett. B 600 (2004) 275 [hep-th/0408055] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    D.J. Gross, Two-dimensional QCD as a string theory, Nucl. Phys. B 400 (1993) 161 [hep-th/9212149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    R.E. Rudd, The string partition function for QCD on the torus, hep-th/9407176 [INSPIRE].
  63. [63]
    R. Dijkgraaf, Mirror symmetry and elliptic curves, in The Moduli Space of Curves, Birkhäuser, Prog. Math. 129 (1995) 149.MathSciNetMATHGoogle Scholar
  64. [64]
    M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in The Moduli Space of Curves, Birkhäuser, Prog. Math. 129 (1995) 165.MATHGoogle Scholar
  65. [65]
    A. Velytsky, Entanglement entropy in d+1 SU(N) gauge theory, Phys. Rev. D 77 (2008) 085021 [arXiv:0801.4111] [INSPIRE].ADSGoogle Scholar
  66. [66]
    A. Gromov and R.A. Santos, Entanglement Entropy in 2D Non-abelian Pure Gauge Theory, Phys. Lett. B 737 (2014) 60 [arXiv:1403.5035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS 2 /CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].ADSGoogle Scholar
  68. [68]
    C.P. Herzog and T. Nishioka, Entanglement Entropy of a Massive Fermion on a Torus, JHEP 03 (2013) 077 [arXiv:1301.0336] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    J.J. Atick, L.J. Dixon, P.A. Griffin and D. Nemeschansky, Multiloop Twist Field Correlation Functions for Z(N) Orbifolds, Nucl. Phys. B 298 (1988) 1 [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, New York, U.S.A. (1984).CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Shouvik Datta
    • 1
  • Justin R. David
    • 1
    • 2
  • S. Prem Kumar
    • 3
  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MunichGermany
  3. 3.Department of PhysicsSwansea UniversitySwanseaUnited Kingdom

Personalised recommendations