Linking leptonic CP violation to quark unitarity triangle

Open Access
Regular Article - Theoretical Physics


We study the linking between the CP violating phase of the lepton sectors and the unitarity triangle of the B0 meson system. Antusch, King, Malinsky and Spinrath have shown that the quark mass matrices with the negligible 1-3 mixing give an interesting relation between the phase of the quark mixing matrices and CP violating measure ϕ2(α). This approach is extended by considering the SO(10) GUT including the Pati-Salam symmetry, which links the Yukawa matrices of the quark sector to the one of the lepton sector. We discuss the relation of the CP violating phases between both quark and lepton sectors as well as the mixing angles. Then, the leptonic CP violating phase is predicted in terms of the angle of the unitarity triangle of the B0 meson system. The leptonic CP violating phase δPMNS is predicted in the region −74 ~ −89°, which is the consistent with the recent T2K results. Our predicted phase is sensitive to ϕ2(α) and ϕ3(γ). These predictions will be clearly tested in the future neutrino experiments as well as the Belle-II experiment.


Neutrino Physics CP violation B-Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T2K collaboration, K. Abe et al., Observation of electron neutrino appearance in a muon neutrino beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    Double CHOOZ collaboration, Y. Abe et al., Background-independent measurement of θ 13 in Double CHOOZ, Phys. Lett. B 735 (2014) 51 [arXiv:1401.5981] [INSPIRE].Google Scholar
  6. [6]
    S.K. Kang, C.S. Kim and J.D. Kim, Neutrino masses and leptonic CP-violation, Phys. Rev. D 62 (2000) 073011 [hep-ph/0004020] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Fukugita and M. Tanimoto, Lepton flavor mixing matrix and CP-violation from neutrino oscillation experiments, Phys. Lett. B 515 (2001) 30 [hep-ph/0107082] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Giunti and M. Tanimoto, CP violation in bilarge lepton mixing, Phys. Rev. D 66 (2002) 113006 [hep-ph/0209169] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].ADSGoogle Scholar
  10. [10]
    B. Adhikary and A. Ghosal, Constraining it CP-violation in a softly broken A 4 symmetric Model, Phys. Rev. D 75 (2007) 073020 [hep-ph/0609193] [INSPIRE].ADSGoogle Scholar
  11. [11]
    B. Adhikary and A. Ghosal, Nonzero U e3 , CP-violation and leptogenesis in a see-saw type softly broken A 4 symmetric model, Phys. Rev. D 78 (2008) 073007 [arXiv:0803.3582] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G.C. Branco, R.G. Felipe and F.R. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim and H. Serodio, Spontaneous leptonic CP-violation and nonzero θ 13, Phys. Rev. D 86 (2012) 076008 [arXiv:1203.2646] [INSPIRE].ADSGoogle Scholar
  14. [14]
    Y.H. Ahn and S.K. Kang, Non-zero θ 13 and CP-violation in a model with A 4 flavor symmetry, Phys. Rev. D 86 (2012) 093003 [arXiv:1203.4185] [INSPIRE].ADSGoogle Scholar
  15. [15]
    H. Ishimori, S. Khalil and E. Ma, CP phases of neutrino mixing in a supersymmetric B-L Gauge Model with T 7 lepton flavor symmetry, Phys. Rev. D 86 (2012) 013008 [arXiv:1204.2705] [INSPIRE].ADSGoogle Scholar
  16. [16]
    H. Ishimori and E. Ma, New simple A 4 neutrino model for nonzero θ 13 and large δ CP, Phys. Rev. D 86 (2012) 045030 [arXiv:1205.0075] [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Rodejohann and H. Zhang, Simple two parameter description of lepton mixing, Phys. Rev. D 86 (2012) 093008 [arXiv:1207.1225] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Marzocca, S.T. Petcov, A. Romanino and M.C. Sevilla, Nonzero |U e3| from charged lepton corrections and the atmospheric neutrino mixing angle, JHEP 05 (2013) 073 [arXiv:1302.0423] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing atmospheric mixing sum rules at precision neutrino facilities, Phys. Rev. D 89 (2014) 016016 [arXiv:1308.4314] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing solar lepton mixing sum rules in neutrino oscillation experiments, JHEP 12 (2014) 122 [arXiv:1410.7573] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino mass and mixing: from theory to experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Z.-z. Xing and S. Zhou, A partial μ-τ symmetry and its prediction for leptonic CP-violation, Phys. Lett. B 737 (2014) 196 [arXiv:1404.7021] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G.C. Branco, M.N. Rebelo, J.I. Silva-Marcos and D. Wegman, Quasidegeneracy of Majorana neutrinos and the origin of large leptonic mixing, Phys. Rev. D 91 (2015) 013001 [arXiv:1405.5120] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.T. Petcov, Predicting the values of the leptonic CP-violation phases in theories with discrete flavour symmetries, Nucl. Phys. B 892 (2015) 400 [arXiv:1405.6006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S.K. Kang and C.S. Kim, Prediction of leptonic CP phase from perturbatively modified tribimaximal (or bimaximal) mixing, Phys. Rev. D 90 (2014) 077301 [arXiv:1406.5014] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Y. Shimizu, M. Tanimoto and K. Yamamoto, Predicting CP-violation in deviation from tri-bimaximal mixing of neutrinos, Mod. Phys. Lett. A 30 (2015) 1550002 [arXiv:1405.1521] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I. Girardi, S.T. Petcov and A.V. Titov, Determining the Dirac CP-violation phase in the neutrino mixing matrix from sum rules, arXiv:1410.8056 [INSPIRE].
  28. [28]
    S.K. Kang and M. Tanimoto, Prediction of leptonic CP phase in A 4 symmetric model, arXiv:1501.07428 [INSPIRE].
  29. [29]
    S. Antusch, S.F. King, M. Malinsky and M. Spinrath, Quark mixing sum rules and the right unitarity triangle, Phys. Rev. D 81 (2010) 033008 [arXiv:0910.5127] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, \( {\theta}_{13}^{PMNS} = {\theta}_C/\sqrt{2} \) from GUTs, Nucl. Phys. B 866 (2013) 255 [arXiv:1205.1051] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, A flavour GUT model with \( {\theta}_{13}^{PMNS} \simeq {\theta}_C/\sqrt{2} \), Nucl. Phys. B 877 (2013) 772 [arXiv:1305.6612] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    S. Antusch and V. Maurer, Large neutrino mixing angle θ 13MNS and quark-lepton mass ratios in unified flavour models, Phys. Rev. D 84 (2011) 117301 [arXiv:1107.3728] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Marzocca, S.T. Petcov, A. Romanino and M. Spinrath, Sizeable θ 13 from the charged lepton sector in SU(5), (tri-)bimaximal neutrino mixing and Dirac CP-violation, JHEP 11 (2011) 009 [arXiv:1108.0614] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino mixings in SO(10) with type II seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P.S. Bhupal Dev, B. Dutta, R.N. Mohapatra and M. Severson, θ 13 and proton decay in a minimal SO(10) × S 4 model of flavor, Phys. Rev. D 86 (2012) 035002 [arXiv:1202.4012] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Bando, S. Kaneko, M. Obara and M. Tanimoto, Can symmetric texture reproduce neutrino bilarge mixing?, Phys. Lett. B 580 (2004) 229 [hep-ph/0309310] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Bando, S. Kaneko, M. Obara and M. Tanimoto, Symmetric mass matrix with two zeros in SUSY SO(10) GUT, lepton flavor violations and leptogenesis, Prog. Theor. Phys. 112 (2004) 533 [hep-ph/0405071] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  39. [39]
    C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].
  42. [42]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D.V. Forero, M. Tortola and J.W.F. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsNiigata UniversityNiigataJapan

Personalised recommendations