Advertisement

N =1 superfield description of vector-tensor couplings in six dimensions

  • Hiroyuki Abe
  • Yutaka Sakamura
  • Yusuke Yamada
Open Access
Regular Article - Theoretical Physics

Abstract

We express supersymmetric couplings among the vector and the tensor multiplets in six dimensions (6D) in terms of N = 1 superfields. The superfield description is derived from the invariant action in the projective superspace. The obtained expression is consistent with the known superfield actions of 6D supersymmetric gauge theory and 5D Chern-Simons theory after the dimensional reduction. Our result provides a crutial clue to the N = 1 superfield description of 6D supergravity.

Keywords

Extended Supersymmetry Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    A. Hebecker, 5 − D super Yang-Mills theory in 4 − D superspace, superfield brane operators and applications to orbifold GUTs, Nucl. Phys. B 632 (2002) 101 [hep-ph/0112230] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    H. Abe, T. Kobayashi, H. Ohki and K. Sumita, Superfield description of 10D SYM theory with magnetized extra dimensions, Nucl. Phys. B 863 (2012) 1 [arXiv:1204.5327] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    I. Linch, William Divine, M.A. Luty and J. Phillips, Five-dimensional supergravity in N = 1 superspace, Phys. Rev. D 68 (2003) 025008 [hep-th/0209060] [INSPIRE].
  6. [6]
    F. Paccetti Correia, M.G. Schmidt and Z.a. Tavartkiladze, Superfield approach to 5D conformal SUGRA and the radion, Nucl. Phys. B 709 (2005) 141 [hep-th/0408138] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    H. Abe and Y. Sakamura, Superfield description of 5D supergravity on general warped geometry, JHEP 10 (2004) 013 [hep-th/0408224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S.M. Kuzenko and I. Linch, William Divine, On five-dimensional superspaces, JHEP 02 (2006) 038 [hep-th/0507176] [INSPIRE].
  9. [9]
    Y. Sakamura, Superfield description of gravitational couplings in generic 5D supergravity, JHEP 07 (2012) 183 [arXiv:1204.6603] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M.A. Luty and R. Sundrum, Radius stabilization and anomaly mediated supersymmetry breaking, Phys. Rev. D 62 (2000) 035008 [hep-th/9910202] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Abe and Y. Sakamura, Roles of Z(2)-odd N = 1 multiplets in off-shell dimensional reduction of 5D supergravity, Phys. Rev. D 75 (2007) 025018 [hep-th/0610234] [INSPIRE].ADSGoogle Scholar
  12. [12]
    H. Abe and Y. Sakamura, Flavor structure with multi moduli in 5D supergravity, Phys. Rev. D 79 (2009) 045005 [arXiv:0807.3725] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Abe, H. Otsuka, Y. Sakamura and Y. Yamada, SUSY flavor structure of generic 5D supergravity models, Eur. Phys. J. C 72 (2012) 2018 [arXiv:1111.3721] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal tensor calculus and matter couplings in six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].
  15. [15]
    F. Coomans and A. Van Proeyen, Off-shell N = (1,0), D = 6 supergravity from superconformal methods, JHEP 02 (2011) 049 [Erratum ibid. 1201 (2012) 119] [arXiv:1101.2403] [INSPIRE].
  16. [16]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    U. Lindström and M. Roček, New hyper-Kähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    U. Lindström and M. Roček, N = 2 super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    I. Linch, William D. and G. Tartaglino-Mazzucchelli, Six-dimensional supergravity and projective superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    I.L. Buchbinder and N.G. Pletnev, Construction of 6D supersymmetric field models in N =(1,0) harmonic superspace, Nucl. Phys. B 892 (2015) 21[arXiv:1411.1848] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S.M. Kuzenko, Lectures on nonlinear σ-models in projective superspace, J. Phys. A 43 (2010) 443001 [arXiv:1004.0880] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  22. [22]
    S.J. Gates Jr., S. Penati and G. Tartaglino-Mazzucchelli, 6D supersymmetry, projective superspace and 4D, N = 1 superfields, JHEP 05 (2006) 051 [hep-th/0508187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    E. Sokatchev, Off-shell six-dimensional supergravity in harmonic superspace, Class. Quant. Grav. 5 (1988) 1459 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).MATHGoogle Scholar
  25. [25]
    T. Kugo and K. Ohashi, Gauge and nongauge tensor multiplets in 5D conformal supergravity, Prog. Theor. Phys. 108 (2003) 1143 [hep-th/0208082] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    A. Hebecker, J. March-Russell and R. Ziegler, Inducing the μ and the Bμ term by the radion and the 5D Chern-Simons term, JHEP 08 (2009) 064 [arXiv:0801.4101] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsWaseda UniversityTokyoJapan
  2. 2.KEK Theory Center, Institute of Particle and Nuclear Studies, KEKTsukubaJapan
  3. 3.Department of Particles and Nuclear PhysicsThe Graduate University for Advanced Studies (Sokendai)TsukubaJapan

Personalised recommendations