Advertisement

Polarization effects in double open-charm production at LHCb

  • Miguel G. Echevarría
  • Tomas Kasemets
  • Piet J. Mulders
  • Cristian Pisano
Open Access
Regular Article - Theoretical Physics

Abstract

Double open-charm production is one of the most promising channels to disentangle single from double parton scattering (DPS) and study different properties of DPS. Several studies of the DPS contributions have been made. A missing ingredient so far has been the study of polarization effects, arising from spin correlations between the two partons inside an unpolarized proton. We investigate the impact polarization has on the double open-charm cross section. We show that the longitudinally polarized gluons can give significant contributions to the cross section, but for most of the considered kinematic region only have a moderate effect on the shape. We compare our findings to the LHCb data in the D0D0 final state, identify observables where polarization does have an impact on the distribution of the final state particles, and suggest measurements which could lead to first experimental indications of, or limits on, polarization in DPS.

Keywords

QCD Phenomenology Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Del Fabbro and D. Treleani, A Double parton scattering background to Higgs boson production at the LHC, Phys. Rev. D 61 (2000) 077502 [hep-ph/9911358] [INSPIRE].ADSGoogle Scholar
  2. [2]
    M.Y. Hussein, A Double parton scattering background to associate WH and ZH production at the LHC, Nucl. Phys. Proc. Suppl. 174 (2007) 55 [hep-ph/0610207] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Bandurin, G. Golovanov and N. Skachkov, Double parton interactions as a background to associated HW production at the Tevatron, JHEP 04 (2011) 054 [arXiv:1011.2186] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Baer et al., Same sign diboson signature from supersymmetry models with light higgsinos at the LHC, Phys. Rev. Lett. 110 (2013) 151801 [arXiv:1302.5816] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.V. Manohar and W.J. Waalewijn, A QCD Analysis of Double Parton Scattering: Color Correlations, Interference Effects and Evolution, Phys. Rev. D 85 (2012) 114009 [arXiv:1202.3794] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Diehl and A. Schäfer, Theoretical considerations on multiparton interactions in QCD, Phys. Lett. B 698 (2011) 389 [arXiv:1102.3081] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, The Four jet production at LHC and Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [arXiv:1009.2714] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Bansal et al., Progress in Double Parton Scattering Studies, arXiv:1410.6664 [INSPIRE].
  9. [9]
    M. Diehl, D. Ostermeier and A. Schäfer, Elements of a theory for multiparton interactions in QCD, JHEP 03 (2012) 089 [arXiv:1111.0910] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    ATLAS collaboration, Measurement of hard double-parton interactions in W (→ ) + 2 jet events at \( \sqrt{s}=7 \) TeV with the ATLAS detector, New J. Phys. 15 (2013) 033038 [arXiv:1301.6872] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    CMS collaboration, Study of double parton scattering using W + 2-jet events in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2014) 032 [arXiv:1312.5729] [INSPIRE].ADSGoogle Scholar
  12. [12]
    LHCb collaboration, Observation of double charm production involving open charm in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 141 [Addendum ibid. 1403 (2014) 108] [arXiv:1205.0975] [INSPIRE].
  13. [13]
    M. Luszczak, R. Maciula and A. Szczurek, Production of two \( c\overline{c} \) pairs in double-parton scattering, Phys. Rev. D 85 (2012) 094034 [arXiv:1111.3255] [INSPIRE].ADSGoogle Scholar
  14. [14]
    E.R. Cazaroto, V.P. Goncalves and F.S. Navarra, Heavy quark production and gluon saturation in double parton scattering at the LHC, Phys. Rev. D 88 (2013) 034005 [arXiv:1306.4169] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.R. Gaunt, R. Maciula and A. Szczurek, Conventional versus single-ladder-splitting contributions to double parton scattering production of two quarkonia, two Higgs bosons and \( c\overline{c}c\overline{c} \), Phys. Rev. D 90 (2014) 054017 [arXiv:1407.5821] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.R. Gaunt, C.-H. Kom, A. Kulesza and W.J. Stirling, Same-sign W pair production as a probe of double parton scattering at the LHC, Eur. Phys. J. C 69 (2010) 53 [arXiv:1003.3953] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. van Hameren, R. Maciula and A. Szczurek, Single-parton scattering versus double-parton scattering in the production of two \( c\overline{c} \) pairs and charmed meson correlations at the LHC, Phys. Rev. D 89 (2014) 094019 [arXiv:1402.6972] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Maciula and A. Szczurek, Production of \( c\overline{c}c\overline{c} \) in double-parton scattering within k t -factorization approachmeson-meson correlations, Phys. Rev. D 87 (2013) 074039 [arXiv:1301.4469] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Golec-Biernat and E. Lewandowska, Electroweak boson production in double parton scattering, Phys. Rev. D 90 (2014) 094032 [arXiv:1407.4038] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Rinaldi, S. Scopetta, M. Traini and V. Vento, Double parton correlations and constituent quark models: a Light Front approach to the valence sector, JHEP 12 (2014) 028 [arXiv:1409.1500] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Rinaldi, S. Scopetta and V. Vento, Double parton correlations in constituent quark models, Phys. Rev. D 87 (2013) 114021 [arXiv:1302.6462] [INSPIRE].ADSGoogle Scholar
  22. [22]
    W. Broniowski and E. Ruiz Arriola, Valence double parton distributions of the nucleon in a simple model, Few Body Syst. 55 (2014) 381 [arXiv:1310.8419] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H.-M. Chang, A.V. Manohar and W.J. Waalewijn, Double Parton Correlations in the Bag Model, Phys. Rev. D 87 (2013) 034009 [arXiv:1211.3132] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Kasemets and P.J. Mulders, Constraining double parton correlations and interferences, Phys. Rev. D 91 (2015) 014015 [arXiv:1411.0726] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Mekhfi and X. Artru, Sudakov suppression of color correlations in multiparton scattering, Phys. Rev. D 37 (1988) 2618.ADSGoogle Scholar
  26. [26]
    M. Diehl and T. Kasemets, Positivity bounds on double parton distributions, JHEP 05 (2013) 150 [arXiv:1303.0842] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    T. Kasemets and M. Diehl, Angular correlations in the double Drell-Yan process, JHEP 01 (2013) 121 [arXiv:1210.5434] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Kasemets, Double parton scatteringa tale of two partons, Ph.D. Thesis, Hamburg University, Hamburg Germany (2013).Google Scholar
  29. [29]
    R. Kirschner, Generalized Lipatov-Altarelli-Parisi Equations and Jet Calculus Rules, Phys. Lett. B 84 (1979) 266 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    V.P. Shelest, A.M. Snigirev and G.M. Zinovev, The Multiparton Distribution Equations in QCD, Phys. Lett. B 113 (1982) 325 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.M. Snigirev, Double parton distributions in the leading logarithm approximation of perturbative QCD, Phys. Rev. D 68 (2003) 114012 [hep-ph/0304172] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.R. Gaunt and W.J. Stirling, Double Parton Distributions Incorporating Perturbative QCD Evolution and Momentum and Quark Number Sum Rules, JHEP 03 (2010) 005 [arXiv:0910.4347] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    F.A. Ceccopieri, An update on the evolution of double parton distributions, Phys. Lett. B 697 (2011) 482 [arXiv:1011.6586] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.R. Gaunt and W.J. Stirling, Double Parton Scattering Singularity in One-Loop Integrals, JHEP 06 (2011) 048 [arXiv:1103.1888] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    J.R. Gaunt, Single Perturbative Splitting Diagrams in Double Parton Scattering, JHEP 01 (2013) 042 [arXiv:1207.0480] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.G. Ryskin and A.M. Snigirev, A Fresh look at double parton scattering, Phys. Rev. D 83 (2011) 114047 [arXiv:1103.3495] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M.G. Ryskin and A.M. Snigirev, Double parton scattering in double logarithm approximation of perturbative QCD, Phys. Rev. D 86 (2012) 014018 [arXiv:1203.2330] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A.V. Manohar and W.J. Waalewijn, What is Double Parton Scattering?, Phys. Lett. B 713 (2012) 196 [arXiv:1202.5034] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B. Blok, Y. Dokshitser, L. Frankfurt and M. Strikman, pQCD physics of multiparton interactions, Eur. Phys. J. C 72 (2012) 1963 [arXiv:1106.5533] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, Perturbative QCD correlations in multi-parton collisions, Eur. Phys. J. C 74 (2014) 2926 [arXiv:1306.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A.M. Snigirev, N.A. Snigireva and G.M. Zinovjev, Perturbative and nonperturbative correlations in double parton distributions, Phys. Rev. D 90 (2014) 014015 [arXiv:1403.6947] [INSPIRE].ADSGoogle Scholar
  42. [42]
    F.A. Ceccopieri, A second update on double parton distributions, Phys. Lett. B 734 (2014) 79 [arXiv:1403.2167] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Diehl, T. Kasemets and S. Keane, Correlations in double parton distributions: effects of evolution, JHEP 05 (2014) 118 [arXiv:1401.1233] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Pisano, D. Boer, S.J. Brodsky, M.G.A. Buffing and P.J. Mulders, Linear polarization of gluons and photons in unpolarized collider experiments, JHEP 10 (2013) 024 [arXiv:1307.3417] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Soffer, Positivity constraints for spin dependent parton distributions, Phys. Rev. Lett. 74 (1995) 1292 [hep-ph/9409254] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Gluck, P. Jimenez-Delgado and E. Reya, Dynamical parton distributions of the nucleon and very small-x physics, Eur. Phys. J. C 53 (2008) 355 [arXiv:0709.0614] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    C. Peterson, D. Schlatter, I. Schmitt and P.M. Zerwas, Scaling Violations in Inclusive e + e Annihilation Spectra, Phys. Rev. D 27 (1983) 105 [INSPIRE].ADSGoogle Scholar
  49. [49]
    E. Braaten, K.-m. Cheung, S. Fleming and T.C. Yuan, Perturbative QCD fragmentation functions as a model for heavy quark fragmentation, Phys. Rev. D 51 (1995) 4819 [hep-ph/9409316] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Binosi and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Miguel G. Echevarría
    • 1
    • 2
  • Tomas Kasemets
    • 1
    • 2
  • Piet J. Mulders
    • 1
    • 2
  • Cristian Pisano
    • 1
    • 2
    • 3
  1. 1.Nikhef Theory GroupAmsterdamThe Netherlands
  2. 2.Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Department of PhysicsUniversity of AntwerpAntwerpBelgium

Personalised recommendations