Massive Born-Infeld and other dual pairs

Open Access
Regular Article - Theoretical Physics


We consider massive dual pairs of p-forms and (Dp − 1)-forms described by non-linear Lagrangians, where non-linear curvature terms in one theory translate into non-linear mass-like terms in the dual theory. In particular, for D = 2p and p even the two non-linear structures coincide when the non-linear massless theory is self-dual. This state of affairs finds a natural realization in the four-dimensional massive N = 1 supersymmetric Born-Infeld action, which describes either a massive vector multiplet or a massive linear (tensor) multiplet with a Born-Infeld mass-like term. These systems should play a role for the massive gravitino multiplet obtained from a partial super-Higgs in N = 2 Supergravity.


Supersymmetry and Duality Supersymmetry Breaking Duality in Gauge Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    S. Deser and R. Puzalowski, Supersymmetric Nonpolynomial Vector Multiplets and Causal Propagation, J. Phys. A 13 (1980) 2501 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    S. Cecotti and S. Ferrara, Supersymmetric Born-infeld Lagrangians, Phys. Lett. B 187 (1987) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Hughes and J. Polchinski, Partially Broken Global Supersymmetry and the Superstring, Nucl. Phys. B 278 (1986) 147 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett. B 180 (1986) 370 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Ferrara, L. Girardello and M. Porrati, Spontaneous breaking of N = 2 to N = 1 in rigid and local supersymmetric theories, Phys. Lett. B 376 (1996) 275 [hep-th/9512180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    I. Antoniadis, H. Partouche and T.R. Taylor, Spontaneous breaking of N = 2 global supersymmetry, Phys. Lett. B 372 (1996) 83 [hep-th/9512006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S. Ferrara, M. Porrati and A. Sagnotti, N = 2 Born-Infeld attractors, JHEP 12 (2014) 065 [arXiv:1411.4954] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Ferrara, M. Porrati, A. Sagnotti, R. Stora and A. Yeranyan, Generalized Born-Infeld Actions and Projective Cubic Curves, arXiv:1412.3337 [INSPIRE].
  12. [12]
    L. Andrianopoli, R. D’Auria and M. Trigiante, On the dualization of Born-Infeld theories, arXiv:1412.6786 [INSPIRE].
  13. [13]
    P. Aschieri, D. Brace, B. Morariu and B. Zumino, Nonlinear selfduality in even dimensions, Nucl. Phys. B 574 (2000) 551 [hep-th/9909021] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    S.M. Kuzenko and S. Theisen, Supersymmetric duality rotations, JHEP 03 (2000) 034 [hep-th/0001068] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S.M. Kuzenko and S. Theisen, Nonlinear selfduality and supersymmetry, PoS(tmr2000)022 [INSPIRE].
  16. [16]
    J. Broedel, J.J.M. Carrasco, S. Ferrara, R. Kallosh and R. Roiban, N = 2 Supersymmetry and U(1)-Duality, Phys. Rev. D 85 (2012) 125036 [arXiv:1202.0014] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    C. Aragone, S. Deser and S. Ferrara, Anti-higgs Effect In Two-dimensional Gauge Theories, Class. Quant. Grav. 4 (1987) 1003 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    S. Cecotti, S. Ferrara and L. Girardello, Massive Vector Multiplets From Superstrings, Nucl. Phys. B 294 (1987) 537 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.K. Gaillard and B. Zumino, Duality Rotations for Interacting Fields, Nucl. Phys. B 193 (1981) 221 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Aschieri, S. Ferrara and B. Zumino, Duality Rotations in Nonlinear Electrodynamics and in Extended Supergravity, Riv. Nuovo Cim. 31 (2008) 625 [arXiv:0807.4039] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P.K. Townsend, K. Pilch and P. van Nieuwenhuizen, Selfduality in Odd Dimensions, Phys. Lett. B 136 (1984) 38 [Addendum ibid. B 137 (1984) 443] [INSPIRE].
  24. [24]
    S. Ferrara, R. Kallosh, A.D. Linde and M. Porrati, Minimal Supergravity Models of Inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Fayet, Higgs Model and Supersymmetry, Nuovo Cim. A 31 (1976) 626 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Van Proeyen, Massive Vector Multiplets in Supergravity, Nucl. Phys. B 162 (1980) 376 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Ferrara and P. van Nieuwenhuizen, Noether Coupling of Massive Gravitinos to N = 1 Supergravity, Phys. Lett. B 127 (1983) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Marcus and J.H. Schwarz, Field Theories That Have No Manifestly Lorentz Invariant Formulation, Phys. Lett. B 115 (1982) 111 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, New Minimal Higher Derivative Supergravity Coupled To Matter, Nucl. Phys. B 306 (1988) 160 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Physics, CERN Theory DivisionGeneva 23Switzerland
  2. 2.INFN - Laboratori Nazionali di FrascatiFrascatiItaly
  3. 3.Scuola Normale Superiore and INFNPisaItaly

Personalised recommendations