Advertisement

Entanglement entropy in three dimensional gravity

Open Access
Regular Article - Theoretical Physics

Abstract

The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotient of AdS3, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the \( \mathrm{\mathbb{R}}{\mathrm{\mathbb{P}}}^2 \) geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.

Keywords

AdS-CFT Correspondence Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  6. [6]
    D.R. Brill, Multi-black hole geometries in (2 + 1)-dimensional gravity, Phys. Rev. D 53 (1996) 4133 [gr-qc/9511022] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    S. Aminneborg, I. Bengtsson, D. Brill, S. Holst and P. Peldan, Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav. 15 (1998) 627 [gr-qc/9707036] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    D. Brill, Black holes and wormholes in (2 + 1)-dimensions, Lect. Notes Phys. 537 (2000) 143 [gr-qc/9904083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Aminneborg, I. Bengtsson and S. Holst, A spinning anti-de Sitter wormhole, Class. Quant. Grav. 16 (1999) 363 [gr-qc/9805028] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    X. Yin, On non-handlebody instantons in 3D gravity, JHEP 09 (2008) 120 [arXiv:0711.2803] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    K. Skenderis and B.C. van Rees, Holography and wormholes in 2 + 1 dimensions, Commun. Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929 [hep-th/0005106] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S.F. Ross, Multiboundary wormholes and holographic entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    F.M. Haehl, T. Hartman, D. Marolf, H. Maxfield and M. Rangamani, Topological aspects of generalized gravitational entropy, arXiv:1412.7561 [INSPIRE].
  21. [21]
    N. Iizuka and N. Ogawa, On the entanglement of multiple CFTs via rotating black hole interior, arXiv:1402.4548 [INSPIRE].
  22. [22]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    I.A. Morrison and M.M. Roberts, Mutual information between thermo-field doubles and disconnected holographic boundaries, JHEP 07 (2013) 081 [arXiv:1211.2887] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    J. Louko and D. Marolf, Single exterior black holes and the AdS/CFT conjecture, Phys. Rev. D 59 (1999) 066002 [hep-th/9808081] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    D. Giulini, 3-manifolds in canonical quantum gravity, Ph.D. thesis, University of Cambridge, Cambridge U.K. (1989).Google Scholar
  26. [26]
    J.L. Friedman, K. Schleich and D.M. Witt, Topological censorship, Phys. Rev. Lett. 71 (1993) 1486 [Erratum ibid. 75 (1995) 1872] [gr-qc/9305017] [INSPIRE].
  27. [27]
    Wolfram Research Inc., Mathematica, version 10.0 ed., Wolfram Research Inc., Champaign IL U.S.A. (2014).Google Scholar
  28. [28]
    H. Araki and E.H. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Z. Xi, X.-M. Lu, X. Wang and Y. Li, Necessary and sufficient condition for saturating the upper bound of quantum discord, Phys. Rev. A 85 (2012) 032109 [arXiv:1111.3837].ADSCrossRefGoogle Scholar
  31. [31]
    S. Fischetti and D. Marolf, Complex entangling surfaces for AdS and Lifshitz black holes?, Class. Quant. Grav. 31 (2014) 214005 [arXiv:1407.2900] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  33. [33]
    T. Faulkner, The entanglement Rényi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Centre for Particle Theory & Department of Mathematical SciencesDurham UniversityDurhamUnited Kingdom

Personalised recommendations