Advertisement

Higgs constraints from vector boson fusion and scattering

  • John M. Campbell
  • R. Keith Ellis
Open Access
Regular Article - Theoretical Physics

Abstract

We present results on 4-lepton + 2-jet production, the partonic processes most commonly described as vector boson pair production in the Vector Boson Fusion (VBF) mode. This final state contains diagrams that are mediated by Higgs boson exchange. We focus particularly on the high-mass behaviour of the Higgs boson mediated diagrams, which unlike on-shell production, gives information about the Higgs couplings without assumptions on the Higgs boson total width. We assess the sensitivity of the high-mass region to Higgs coupling strengths, considering all vector boson pair channels, WW+, W±W±, W±Z and ZZ. Because of the small background, the most promising mode is W+W+ which has sensitivity to Higgs couplings because of Higgs boson exchange in the t-channel. Using the Caola-Melnikov (CM) method, the off-shell couplings can be interpreted as bounds on the Higgs boson total width. We estimate the bound that can be obtained with current data, as well as the bounds that could be obtained at \( \sqrt{s}=13 \) TeV in the VBF channel for data samples of 100 and 300 fb−1. The CM method has already been successfully applied in the gluon fusion (GGF) production channel. The VBF production channel gives important complementary information, because both production and decay of the Higgs boson occur already at tree graph level.

Keywords

Hadronic Colliders Monte Carlo Simulations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  2. [2]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Determination of the off-shell Higgs boson signal strength in the high-mass ZZ final state with the ATLAS detector, ATLAS-CONF-2014-042 (2014).
  7. [7]
    C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H.E. Logan, Hiding a Higgs width enhancement from off-shell gg(→ h *) → ZZ measurements, arXiv:1412.7577 [INSPIRE].
  9. [9]
    A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, Zh. Eksp. Teor. Fiz. 147 (2015) 410 [arXiv:1406.6338] [INSPIRE].Google Scholar
  10. [10]
    G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond Geolocating: Constraining Higher Dimensional Operators in H → 4ℓ with Off-Shell Production and More, Phys. Rev. D 91 (2015) 035011 [arXiv:1403.4951] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Englert, Y. Soreq and M. Spannowsky, Off-Shell Higgs Coupling Measurements in BSM scenarios, arXiv:1410.5440 [INSPIRE].
  13. [13]
    W. Kilian, T. Ohl, J. Reuter and M. Sekulla, High-Energy Vector Boson Scattering after the Higgs Discovery, arXiv:1408.6207 [INSPIRE].
  14. [14]
    M. Szleper, The Higgs boson and the physics of WW scattering before and after Higgs discovery, arXiv:1412.8367 [INSPIRE].
  15. [15]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G.L. Kane, W.W. Repko and W.B. Rolnick, The Effective W ± , Z 0 Approximation for High-Energy Collisions, Phys. Lett. B 148 (1984) 367 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    ATLAS collaboration, Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, JHEP 04 (2014) 031 [arXiv:1401.7610] [INSPIRE].ADSGoogle Scholar
  19. [19]
    CMS collaboration, Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 66 [arXiv:1410.3153] [INSPIRE].Google Scholar
  20. [20]
    B. Jager, S. Schneider and G. Zanderighi, Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEG BOX, JHEP 09 (2012) 083 [arXiv:1207.2626] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Denner, L. Hofer, A. Scharf and S. Uccirati, Electroweak corrections to lepton pair production in association with two hard jets at the LHC, JHEP 01 (2015) 094 [arXiv:1411.0916] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    ATLAS collaboration, Evidence for Electroweak Production of W ± W ± jj in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 113 (2014) 141803 [arXiv:1405.6241] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    CMS collaboration, Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett. 114 (2015) 051801 [arXiv:1410.6315] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Ballestrero, A. Belhouari, G. Bevilacqua, V. Kashkan and E. Maina, PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders, Comput. Phys. Commun. 180 (2009) 401 [arXiv:0801.3359] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Ballestrero, D.B. Franzosi and E. Maina, Vector-Vector scattering at the LHC with two charged leptons and two neutrinos in the final state, JHEP 06 (2011) 013 [arXiv:1011.1514] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.R. Andersen and J.M. Smillie, QCD and electroweak interference in Higgs production by gauge boson fusion, Phys. Rev. D 75 (2007) 037301 [hep-ph/0611281] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Baglio et al., Release Note - VBFNLO 2.7.0, arXiv:1404.3940 [INSPIRE].
  31. [31]
    B. Jager and G. Zanderighi, NLO corrections to electroweak and QCD production of W + W + plus two jets in the POWHEGBOX, JHEP 11 (2011) 055 [arXiv:1108.0864] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Jager and G. Zanderighi, Electroweak W + W jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX, JHEP 04 (2013) 024 [arXiv:1301.1695] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    J.R. Gaunt, C.-H. Kom, A. Kulesza and W.J. Stirling, Same-sign W pair production as a probe of double parton scattering at the LHC, Eur. Phys. J. C 69 (2010) 53 [arXiv:1003.3953] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  37. [37]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining Triple Gauge Boson Couplings from Higgs Data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    ATLAS collaboration, Observation and measurement of Higgs boson decays to WW * with the ATLAS detector, arXiv:1412.2641 [INSPIRE].
  39. [39]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, arXiv:1412.8662 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.FermilabBataviaUnited States

Personalised recommendations