Model-independent production of a top-philic resonance at the LHC

  • Nicolas Greiner
  • Kyoungchul Kong
  • Jong-Chul Park
  • Seong Chan Park
  • Jan-Christopher Winter
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the collider phenomenology of a color-singlet vector resonance, which couples to the heaviest quarks, the top quarks, but very weakly to the rest of the fermions in the Standard Model. We find that the dominant production of such a resonance does not appear at the tree level — it rather occurs at the one-loop level in association with an extra jet. Signatures like \( t\overline{t} \) plus jets readily emerge as a result of the subsequent decay of the resonance into a pair of top quarks. Without the additional jet, the resonance can still be produced off-shell, which gives a sizeable contribution at low masses. The lower top quark multiplicity of the loop induced resonance production facilitates its reconstruction as compared to the tree level production that gives rise to more exotic signatures involving three or even four top quarks in the final state. For all these cases, we discuss the constraints on the resonance production stemming from recent experimental measurements in the top quark sector. We find that the top-philic vector resonance remains largely unconstrained for the majority of the parameter space, although this will be scrutinized closely in the Run 2 phase of the LHC.

Keywords

Phenomenological Models Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    U. Haisch and S. Westhoff, Massive Color-Octet Bosons: Bounds on Effects in Top-Quark Pair Production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Lillie, L. Randall and L.-T. Wang, The Bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. Lillie, J. Shu and T.M.P. Tait, Kaluza-Klein Gluons as a Diagnostic of Warped Models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A.L. Fitzpatrick, J. Kaplan, L. Randall and L.-T. Wang, Searching for the Kaluza-Klein Graviton in Bulk RS Models, JHEP 09 (2007) 013 [hep-ph/0701150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    K. Kong, S.C. Park and T.G. Rizzo, Collider Phenomenology with Split-UED, JHEP 04 (2010) 081 [arXiv:1002.0602] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    T. Flacke, K. Kong and S.C. Park, Phenomenology of Universal Extra Dimensions with Bulk-Masses and Brane-Localized Terms, JHEP 05 (2013) 111 [arXiv:1303.0872] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E.H. Simmons, Coloron phenomenology, Phys. Rev. D 55 (1997) 1678 [hep-ph/9608269] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Bagger, C. Schmidt and S. King, Axigluon Production in Hadronic Collisions, Phys. Rev. D 37 (1988) 1188 [INSPIRE].ADSGoogle Scholar
  9. [9]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 14 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-052 (2013) [INSPIRE].
  10. [10]
    ATLAS collaboration, Search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 4.7 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 88 (2013) 012004 [arXiv:1305.2756] [INSPIRE].ADSGoogle Scholar
  11. [11]
    CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [arXiv:1309.2030] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    CMS collaboration, Search for Z resonances decaying to \( t\overline{t} \) in dilepton + jets final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013) 072002 [arXiv:1211.3338] [INSPIRE].ADSGoogle Scholar
  13. [13]
    New Physics Working Group, G. Brooijmans et al., New Physics at the LHC. A Les Houches Report: Physics at TeV Colliders 2009New Physics Working Group, CERN-PH-TH-2010-096 (2010) [arXiv:1005.1229] [INSPIRE].
  14. [14]
    J. Alwall, M. Khader, A. Rajaraman, D. Whiteson and M. Yen, Searching for Z bosons decaying to gluons, Phys. Rev. D 85 (2012) 115011 [arXiv:1202.4014] [INSPIRE].ADSGoogle Scholar
  15. [15]
    CDF collaboration, T. Aaltonen et al., Search for a heavy vector boson decaying to two gluons in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 86 (2012) 112002 [arXiv:1210.5686] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    K. Kumar, T.M.P. Tait and R. Vega-Morales, Manifestations of Top Compositeness at Colliders, JHEP 05 (2009) 022 [arXiv:0901.3808] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Lillie, J. Shu and T.M.P. Tait, Top Compositeness at the Tevatron and LHC, JHEP 04 (2008) 087 [arXiv:0712.3057] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Han, N. Liu, L. Wu and J.M. Yang, Probing topcolor-assisted technicolor from top charge asymmetry and triple-top production at the LHC, Phys. Lett. B 714 (2012) 295 [arXiv:1203.2321] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.A. Aguilar-Saavedra and J. Santiago, Four tops and the \( t\overline{t} \) forward-backward asymmetry, Phys. Rev. D 85 (2012) 034021 [arXiv:1112.3778] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Plehn and T.M.P. Tait, Seeking Sgluons, J. Phys. G 36 (2009) 075001 [arXiv:0810.3919] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Massive color-octet bosons and pairs of resonances at hadron colliders, Phys. Lett. B 670 (2008) 119 [arXiv:0709.2378] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C.-R. Chen, W. Klemm, V. Rentala and K. Wang, Color Sextet Scalars at the CERN Large Hadron Collider, Phys. Rev. D 79 (2009) 054002 [arXiv:0811.2105] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  29. [29]
    G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    T. Reiter, Optimising Code Generation with haggies, Comput. Phys. Commun. 181 (2010) 1301 [arXiv:0907.3714] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  32. [32]
    H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering Amplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: A Numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    G. Cullen et al., Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    J.P. Guillet, G. Heinrich and J.F. von Soden-Fraunhofen, Tools for NLO automation: extension of the golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828 [arXiv:1312.3887] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    CMS collaboration, Search for standard model production of four top quarks in the lepton + jets channel in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2014) 154 [arXiv:1409.7339] [INSPIRE].Google Scholar
  45. [45]
    ATLAS collaboration, Search for exotic same-sign dilepton signatures (b quark, T 5/3 and four top quarks production) in 4.7/fb of pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2012-130 (2012) [INSPIRE].
  46. [46]
    G. Bevilacqua and M. Worek, Constraining BSM Physics at the LHC: Four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    CDF and D0 collaborations, T.A. Aaltonen et al., Combination of measurements of the top-quark pair production cross section from the Tevatron Collider, Phys. Rev. D 89 (2014) 072001 [arXiv:1309.7570] [INSPIRE].ADSGoogle Scholar
  49. [49]
    CDF collaboration, T. Schwarz, R. Erbacher, J. Huston, M. Hussein and S. Mrenna, Measurement of the \( t\overline{t} \) + jet Cross section with 4.1 fb −1, CDF Note 9850 (2009).Google Scholar
  50. [50]
    ATLAS collaboration, Measurement of the top quark pair production cross-section with ATLAS in pp collisions at \( \sqrt{s}=7 \) TeV in the single-lepton channel using semileptonic b decays, ATLAS-CONF-2012-131 (2012) [INSPIRE].
  51. [51]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 067 [arXiv:1208.2671] [INSPIRE].ADSGoogle Scholar
  52. [52]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s}=8 \) TeV with lepton + jets final states, Phys. Lett. B 720 (2013) 83 [arXiv:1212.6682] [INSPIRE].ADSGoogle Scholar
  53. [53]
    ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section using eμ events with b-tagged jets in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3109 [arXiv:1406.5375] [INSPIRE].ADSGoogle Scholar
  54. [54]
    ATLAS collaboration, Simultaneous measurements of the \( t\overline{t} \) , W + W and Z/γ *ττ production cross-sections in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, CERN-PH-EP-2014-119 (2014) [INSPIRE].
  55. [55]
    ATLAS collaboration, Measurement of the top quark pair production cross section in the single-lepton channel with ATLAS in proton-proton collisions at 8 TeV using kinematic fits with b-tagging, ATLAS-CONF-2012-149 (2012) [INSPIRE].
  56. [56]
    CMS Collaboration, Top pair cross section in e/mu + jets at 8 TeV, CMS-PAS-TOP-12-006 (2012) [INSPIRE].
  57. [57]
    ATLAS collaboration, Combination of ATLAS and CMS top-quark pair cross section measurements using up to 1.1 fb −1 of data at 7 TeV, ATLAS-CONF-2012-134 (2012) [INSPIRE].
  58. [58]
    ATLAS collaboration, Combination of ATLAS and CMS top quark pair cross section measurements in the eμ final state using proton-proton collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2014-054 (2014) [INSPIRE].
  59. [59]
    ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s}=8 \) TeV using eμ events with b-tagged jets, ATLAS-CONF-2013-097 (2013) [INSPIRE].
  60. [60]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2014) 024 [Erratum ibid. 02 (2014) 102] [arXiv:1312.7582] [INSPIRE].
  61. [61]
    M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    ATLAS collaboration, Measurement of the cross section in \( t\overline{t} \) + jets using kinematics fit method with the ATLAS detector, ATLAS-CONF-2012-083 (2012) [INSPIRE].
  63. [63]
    CMS collaboration, Measurement of jet multiplicity distributions in \( t\overline{t} \) production in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 74 (2014) 3014 [arXiv:1404.3171] [INSPIRE].ADSGoogle Scholar
  64. [64]
    ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector, JHEP 01 (2015) 020 [arXiv:1407.0891] [INSPIRE].ADSGoogle Scholar
  65. [65]
    ATLAS collaboration, Measurement of the jet multiplicity in top anti-top final states produced in 7 TeV proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-155 (2012) [INSPIRE].
  66. [66]
    CMS Collaboration, Measurement of the Jet Multiplicity in dileptonic Top Quark Pair Events at 8 TeV, CMS-PAS-TOP-12-041 (2013) [INSPIRE].
  67. [67]
    S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to \( t\overline{t} \) + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP 01 (2012) 137 [arXiv:1110.5251] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Nicolas Greiner
    • 1
    • 2
  • Kyoungchul Kong
    • 3
  • Jong-Chul Park
    • 3
    • 4
  • Seong Chan Park
    • 4
    • 5
  • Jan-Christopher Winter
    • 2
  1. 1.DESY Theory GroupHamburgGermany
  2. 2.Max Planck Institut für PhysikMünchenGermany
  3. 3.Department of Physics and AstronomyUniversity of KansasLawrenceUnited States
  4. 4.Department of PhysicsSungkyunkwan UniversitySuwonSouth Korea
  5. 5.School of PhysicsKorea Institute for Advanced StudySeoulSouth Korea

Personalised recommendations