# Exploring Euclidean dynamical triangulations with a non-trivial measure term

- 509 Downloads
- 8 Citations

## Abstract

We investigate a nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) with a non-trivial measure term in the path integral. We are motivated to revisit this older formulation of dynamical triangulations by hints from renormalization group approaches that gravity may be asymptotically safe and by the emergence of a semiclassical phase in causal dynamical triangulations (CDT).

We study the phase diagram of this model and identify the two phases that are well known from previous work: the branched polymer phase and the collapsed phase. We verify that the order of the phase transition dividing the branched polymer phase from the collapsed phase is almost certainly first-order. The nontrivial measure term enlarges the phase diagram, allowing us to explore a region of the phase diagram that has been dubbed the crinkled region. Although the collapsed and branched polymer phases have been studied extensively in the literature, the crinkled region has not received the same scrutiny. We find that the crinkled region is likely a part of the collapsed phase with particularly large finite-size effects. Intriguingly, the behavior of the spectral dimension in the crinkled region at small volumes is similar to that of CDT, as first reported in arXiv:1104.5505, but for sufficiently large volumes the crinkled region does not appear to have 4-dimensional semiclassical features. Thus, we find that the crinkled region of the EDT formulation does not share the good features of the extended phase of CDT, as we first suggested in arXiv:1104.5505. This agrees with the recent results of arXiv:1307.2270, in which the authors used a somewhat different discretization of EDT from the one presented here.

### Keywords

Lattice Models of Gravity Models of Quantum Gravity## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

### References

- [1]
- [2]G. ’t Hooft and M.J.G. Veltman,
*One loop divergencies in the theory of gravitation*,*Annales Poincaré Phys. Theor.***A 20**(1974) 69 [INSPIRE]. - [3]M.H. Goroff and A. Sagnotti,
*The ultraviolet behavior of Einstein gravity*,*Nucl. Phys.***B 266**(1986) 709 [INSPIRE].ADSCrossRefGoogle Scholar - [4]S. Weinberg,
*Ultraviolet divergences in quantum theories of gravitation*, in*General relativity, an Einstein centenary survey*, chapter 16, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979), pg. 790 [INSPIRE]. - [5]Particle Data Group collaboration, J. Beringer et al.,
*Review of particle physics (RPP)*,*Phys. Rev.***D 86**(2012) 010001 [INSPIRE].Google Scholar - [6]G. Colangelo et al.,
*Review of lattice results concerning low energy particle physics*,*Eur. Phys. J.***C 71**(2011) 1695 [arXiv:1011.4408] [INSPIRE].ADSCrossRefGoogle Scholar - [7]M. Reuter and F. Saueressig,
*Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation*,*Phys. Rev.***D 65**(2002) 065016 [hep-th/0110054] [INSPIRE].ADSMathSciNetGoogle Scholar - [8]O. Lauscher and M. Reuter,
*Ultraviolet fixed point and generalized flow equation of quantum gravity*,*Phys. Rev.***D 65**(2002) 025013 [hep-th/0108040] [INSPIRE].ADSMathSciNetGoogle Scholar - [9]D.F. Litim,
*Fixed points of quantum gravity*,*Phys. Rev. Lett.***92**(2004) 201301 [hep-th/0312114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [10]A. Codello, R. Percacci and C. Rahmede,
*Ultraviolet properties of f*(*R*)*-gravity*,*Int. J. Mod. Phys.***A 23**(2008) 143 [arXiv:0705.1769] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [11]A. Codello, R. Percacci and C. Rahmede,
*Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation*,*Annals Phys.***324**(2009) 414 [arXiv:0805.2909] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [12]D. Benedetti, P.F. Machado and F. Saueressig,
*Asymptotic safety in higher-derivative gravity*,*Mod. Phys. Lett.***A 24**(2009) 2233 [arXiv:0901.2984] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [13]J. Ambjørn, J. Jurkiewicz and R. Loll,
*Reconstructing the universe*,*Phys. Rev.***D 72**(2005) 064014 [hep-th/0505154] [INSPIRE].ADSGoogle Scholar - [14]J. Ambjørn and R. Loll,
*Nonperturbative Lorentzian quantum gravity, causality and topology change*,*Nucl. Phys.***B 536**(1998) 407 [hep-th/9805108] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [15]J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll,
*The nonperturbative quantum de Sitter universe*,*Phys. Rev.***D 78**(2008) 063544 [arXiv:0807.4481] [INSPIRE].ADSMathSciNetMATHGoogle Scholar - [16]J. Ambjørn and J. Jurkiewicz,
*Four-dimensional simplicial quantum gravity*,*Phys. Lett.***B 278**(1992) 42 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [17]M.E. Agishtein and A.A. Migdal,
*Simulations of four-dimensional simplicial quantum gravity*,*Mod. Phys. Lett.***A 7**(1992) 1039 [INSPIRE].ADSCrossRefMATHGoogle Scholar - [18]S. Catterall, J.B. Kogut and R. Renken,
*Phase structure of four-dimensional simplicial quantum gravity*,*Phys. Lett.***B 328**(1994) 277 [hep-lat/9401026] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [19]J. Ambjørn and J. Jurkiewicz,
*Scaling in four-dimensional quantum gravity*,*Nucl. Phys.***B 451**(1995) 643 [hep-th/9503006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [20]P. Bialas, Z. Burda, A. Krzywicki and B. Petersson,
*Focusing on the fixed point of*4*D simplicial gravity*,*Nucl. Phys.***B 472**(1996) 293 [hep-lat/9601024] [INSPIRE].ADSCrossRefGoogle Scholar - [21]B.V. de Bakker,
*Further evidence that the transition of*4*D dynamical triangulation is first order*,*Phys. Lett.***B 389**(1996) 238 [hep-lat/9603024] [INSPIRE].ADSCrossRefGoogle Scholar - [22]T. Rindlisbacher and P. de Forcrand,
*Euclidean dynamical triangulation revisited: is the phase transition really first order?*, arXiv:1311.4712 [INSPIRE]. - [23]F. Markopoulou and L. Smolin,
*Gauge fixing in causal dynamical triangulations*,*Nucl. Phys.***B 739**(2006) 120 [hep-th/0409057] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [24]S. Jordan and R. Loll,
*De Sitter universe from causal dynamical triangulations without preferred foliation*,*Phys. Rev.***D 88**(2013) 044055 [arXiv:1307.5469] [INSPIRE].ADSMATHGoogle Scholar - [25]B. Bruegmann and E. Marinari, 4
*D simplicial quantum gravity with a nontrivial measure*,*Phys. Rev. Lett.***70**(1993) 1908 [hep-lat/9210002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [26]S. Bilke et al., 4
*D simplicial quantum gravity: matter fields and the corresponding effective action*,*Phys. Lett.***B 432**(1998) 279 [hep-lat/9804011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [27]J. Laiho and D. Coumbe,
*Evidence for asymptotic safety from lattice quantum gravity*,*Phys. Rev. Lett.***107**(2011) 161301 [arXiv:1104.5505] [INSPIRE].ADSCrossRefGoogle Scholar - [28]J. Laiho and D. Coumbe,
*Asymptotic safety and lattice quantum gravity*, PoS(LATTICE 2011)005 [INSPIRE]. - [29]D. Coumbe and J. Laiho,
*Exploring the phase diagram of lattice quantum gravity*, PoS(LATTICE 2011)334 [arXiv:1201.2864] [INSPIRE]. - [30]G. Thorleifsson, P. Bialas and B. Petersson,
*The weak coupling limit of simplicial quantum gravity*,*Nucl. Phys.***B 550**(1999) 465 [hep-lat/9812022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [31]J. Ambjørn, L. Glaser, A. Görlich and J. Jurkiewicz,
*Euclidian*4*D quantum gravity with a non-trivial measure term*,*JHEP***10**(2013) 100 [arXiv:1307.2270] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [32]J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll,
*A second-order phase transition in CDT*,*Phys. Rev. Lett.***107**(2011) 211303 [arXiv:1108.3932] [INSPIRE].ADSCrossRefGoogle Scholar - [33]J. Ambjørn,
*Strings, quantum gravity and noncommutative geometry on the lattice*,*Nucl. Phys. Proc. Suppl.***106**(2002) 62 [hep-lat/0201012] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [34]J. Ambjørn and S. Varsted,
*Three-dimensional simplicial quantum gravity*,*Nucl. Phys.***B 373**(1992) 557 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [35]M.E. Agishtein and A.A. Migdal,
*Three-dimensional quantum gravity as dynamical triangulation*,*Mod. Phys. Lett.***A 6**(1991) 1863 [*Erratum ibid.***A 6**(1991) 2555] [INSPIRE]. - [36]D.V. Boulatov and A. Krzywicki,
*On the phase diagram of three-dimensional simplicial quantum gravity*,*Mod. Phys. Lett.***A 6**(1991) 3005 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [37]T. Regge,
*General relativity without coordinates*,*Nuovo Cim.***19**(1961) 558 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [38]S. Bilke and G. Thorleifsson,
*Simulating four-dimensional simplicial gravity using degenerate triangulations*,*Phys. Rev.***D 59**(1999) 124008 [hep-lat/9810049] [INSPIRE].ADSMATHGoogle Scholar - [39]G. Thorleifsson,
*Three-dimensional simplicial gravity and degenerate triangulations*,*Nucl. Phys.***B 538**(1999) 278 [hep-lat/9807026] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [40]U. Pachner,
*P.l. homeomorphic manifolds are equivalent by elementary shellings*,*Eur. J. Comb.***12**(1991) 129.MathSciNetCrossRefMATHGoogle Scholar - [41]J. Alexander,
*General relativity without coordinates*,*Ann. Math***31**(1930) 292.ADSMathSciNetCrossRefGoogle Scholar - [42]B.V. de Bakker and J. Smit,
*Curvature and scaling in*4*D dynamical triangulation*,*Nucl. Phys.***B 439**(1995) 239 [hep-lat/9407014] [INSPIRE].ADSCrossRefGoogle Scholar - [43]B.V. De Bakker and J. Smit,
*Volume dependence of the phase boundary in*4*D dynamical triangulation*,*Phys. Lett.***B 334**(1994) 304 [hep-lat/9405013] [INSPIRE].ADSCrossRefGoogle Scholar - [44]J. Ambjørn, J. Jurkiewicz and R. Loll,
*Lorentzian and Euclidean quantum gravity*—*analytical and numerical results*,*NATO Sci. Ser. C***556**(2000) 381 [hep-th/0001124] [INSPIRE].MathSciNetMATHGoogle Scholar - [45]S. Catterall, J.B. Kogut, R. Renken and G. Thorleifsson,
*Baby universes in*4*D dynamical triangulation*,*Phys. Lett.***B 366**(1996) 72 [hep-lat/9509004] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [46]T. Jonsson and J.F. Wheater,
*The spectral dimension of the branched polymer phase of two-dimensional quantum gravity*,*Nucl. Phys.***B 515**(1998) 549 [hep-lat/9710024] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [47]J. Ambjørn, D. Boulatov, J.L. Nielsen, J. Rolf and Y. Watabiki,
*The spectral dimension of*2*D quantum gravity*,*JHEP***02**(1998) 010 [hep-th/9801099] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [48]S. Blundell and K. Blundell,
*Concepts in thermal physics*, Oxford University Press, Oxford U.K. (2008).MATHGoogle Scholar - [49]J. Smit,
*Continuum interpretation of the dynamical-triangulation formulation of quantum Einstein gravity*,*JHEP***08**(2013) 016 [arXiv:1304.6339] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [50]M. Newman and G. Barkema,
*Monte Carlo methods in statistical physics*, Oxford University Press, Oxford U.K. (1999).MATHGoogle Scholar - [51]H. Meyer-Ortmanns,
*Phase transitions in quantum chromodynamics*,*Rev. Mod. Phys.***68**(1996) 473 [hep-lat/9608098] [INSPIRE].ADSCrossRefGoogle Scholar - [52]S. Warner, S. Catterall and R. Renken,
*Phase structure of*3*D dynamical triangulations with a boundary*, in*Toward the theory of everything, MRST*’98, Montreal Canada (1998), pg. 212 [INSPIRE]. - [53]R.L. Renken, S.M. Catterall and J.B. Kogut,
*Phase structure of dynamical triangulation models in three-dimensions*,*Nucl. Phys.***B 523**(1998) 553 [hep-lat/9712011] [INSPIRE].ADSCrossRefGoogle Scholar - [54]J. Ambjørn, J. Jurkiewicz and R. Loll,
*Spectral dimension of the universe*,*Phys. Rev. Lett.***95**(2005) 171301 [hep-th/0505113] [INSPIRE].ADSCrossRefGoogle Scholar - [55]M. Reuter and F. Saueressig,
*Fractal space-times under the microscope: a renormalization group view on Monte Carlo data*,*JHEP***12**(2011) 012 [arXiv:1110.5224] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [56]S. Rechenberger and F. Saueressig,
*The R*^{2}*phase-diagram of QEG and its spectral dimension*,*Phys. Rev.***D 86**(2012) 024018 [arXiv:1206.0657] [INSPIRE].ADSGoogle Scholar - [57]D.N. Coumbe and J. Jurkiewicz,
*Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations*,*JHEP***03**(2015) 151 [arXiv:1411.7712] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [58]A. Shomer,
*A pedagogical explanation for the non-renormalizability of gravity*, arXiv:0709.3555 [INSPIRE]. - [59]T. Banks,
*TASI lectures on holographic space-time, SUSY and gravitational effective field theory*, arXiv:1007.4001 [INSPIRE]. - [60]R. Percacci and G.P. Vacca,
*Asymptotic safety, emergence and minimal length*,*Class. Quant. Grav.***27**(2010) 245026 [arXiv:1008.3621] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [61]K. Falls and D.F. Litim,
*Black hole thermodynamics under the microscope*,*Phys. Rev.***D 89**(2014) 084002 [arXiv:1212.1821] [INSPIRE].ADSGoogle Scholar - [62]K.S. Stelle,
*Renormalization of higher derivative quantum gravity*,*Phys. Rev.***D 16**(1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar - [63]J. Ambjørn, J. Jurkiewicz and C.F. Kristjansen,
*Quantum gravity, dynamical triangulations and higher derivative regularization*,*Nucl. Phys.***B 393**(1993) 601 [hep-th/9208032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar