Exploring Euclidean dynamical triangulations with a non-trivial measure term

Open Access
Regular Article - Theoretical Physics

Abstract

We investigate a nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) with a non-trivial measure term in the path integral. We are motivated to revisit this older formulation of dynamical triangulations by hints from renormalization group approaches that gravity may be asymptotically safe and by the emergence of a semiclassical phase in causal dynamical triangulations (CDT).

We study the phase diagram of this model and identify the two phases that are well known from previous work: the branched polymer phase and the collapsed phase. We verify that the order of the phase transition dividing the branched polymer phase from the collapsed phase is almost certainly first-order. The nontrivial measure term enlarges the phase diagram, allowing us to explore a region of the phase diagram that has been dubbed the crinkled region. Although the collapsed and branched polymer phases have been studied extensively in the literature, the crinkled region has not received the same scrutiny. We find that the crinkled region is likely a part of the collapsed phase with particularly large finite-size effects. Intriguingly, the behavior of the spectral dimension in the crinkled region at small volumes is similar to that of CDT, as first reported in arXiv:1104.5505, but for sufficiently large volumes the crinkled region does not appear to have 4-dimensional semiclassical features. Thus, we find that the crinkled region of the EDT formulation does not share the good features of the extended phase of CDT, as we first suggested in arXiv:1104.5505. This agrees with the recent results of arXiv:1307.2270, in which the authors used a somewhat different discretization of EDT from the one presented here.

Keywords

Lattice Models of Gravity Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Donoghue, Perturbative dynamics of quantum general relativity, gr-qc/9712070 [INSPIRE].
  2. [2]
    G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales Poincaré Phys. Theor. A 20 (1974) 69 [INSPIRE].
  3. [3]
    M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity, an Einstein centenary survey, chapter 16, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979), pg. 790 [INSPIRE].
  5. [5]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  6. [6]
    G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Ambjørn and R. Loll, Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys. B 536 (1998) 407 [hep-th/9805108] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev. D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  16. [16]
    J. Ambjørn and J. Jurkiewicz, Four-dimensional simplicial quantum gravity, Phys. Lett. B 278 (1992) 42 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M.E. Agishtein and A.A. Migdal, Simulations of four-dimensional simplicial quantum gravity, Mod. Phys. Lett. A 7 (1992) 1039 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    S. Catterall, J.B. Kogut and R. Renken, Phase structure of four-dimensional simplicial quantum gravity, Phys. Lett. B 328 (1994) 277 [hep-lat/9401026] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    J. Ambjørn and J. Jurkiewicz, Scaling in four-dimensional quantum gravity, Nucl. Phys. B 451 (1995) 643 [hep-th/9503006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    P. Bialas, Z. Burda, A. Krzywicki and B. Petersson, Focusing on the fixed point of 4D simplicial gravity, Nucl. Phys. B 472 (1996) 293 [hep-lat/9601024] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    B.V. de Bakker, Further evidence that the transition of 4D dynamical triangulation is first order, Phys. Lett. B 389 (1996) 238 [hep-lat/9603024] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Rindlisbacher and P. de Forcrand, Euclidean dynamical triangulation revisited: is the phase transition really first order?, arXiv:1311.4712 [INSPIRE].
  23. [23]
    F. Markopoulou and L. Smolin, Gauge fixing in causal dynamical triangulations, Nucl. Phys. B 739 (2006) 120 [hep-th/0409057] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S. Jordan and R. Loll, De Sitter universe from causal dynamical triangulations without preferred foliation, Phys. Rev. D 88 (2013) 044055 [arXiv:1307.5469] [INSPIRE].ADSMATHGoogle Scholar
  25. [25]
    B. Bruegmann and E. Marinari, 4D simplicial quantum gravity with a nontrivial measure, Phys. Rev. Lett. 70 (1993) 1908 [hep-lat/9210002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S. Bilke et al., 4D simplicial quantum gravity: matter fields and the corresponding effective action, Phys. Lett. B 432 (1998) 279 [hep-lat/9804011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J. Laiho and D. Coumbe, Evidence for asymptotic safety from lattice quantum gravity, Phys. Rev. Lett. 107 (2011) 161301 [arXiv:1104.5505] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Laiho and D. Coumbe, Asymptotic safety and lattice quantum gravity, PoS(LATTICE 2011)005 [INSPIRE].
  29. [29]
    D. Coumbe and J. Laiho, Exploring the phase diagram of lattice quantum gravity, PoS(LATTICE 2011)334 [arXiv:1201.2864] [INSPIRE].
  30. [30]
    G. Thorleifsson, P. Bialas and B. Petersson, The weak coupling limit of simplicial quantum gravity, Nucl. Phys. B 550 (1999) 465 [hep-lat/9812022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    J. Ambjørn, L. Glaser, A. Görlich and J. Jurkiewicz, Euclidian 4D quantum gravity with a non-trivial measure term, JHEP 10 (2013) 100 [arXiv:1307.2270] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett. 107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Ambjørn, Strings, quantum gravity and noncommutative geometry on the lattice, Nucl. Phys. Proc. Suppl. 106 (2002) 62 [hep-lat/0201012] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    J. Ambjørn and S. Varsted, Three-dimensional simplicial quantum gravity, Nucl. Phys. B 373 (1992) 557 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M.E. Agishtein and A.A. Migdal, Three-dimensional quantum gravity as dynamical triangulation, Mod. Phys. Lett. A 6 (1991) 1863 [Erratum ibid. A 6 (1991) 2555] [INSPIRE].
  36. [36]
    D.V. Boulatov and A. Krzywicki, On the phase diagram of three-dimensional simplicial quantum gravity, Mod. Phys. Lett. A 6 (1991) 3005 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Bilke and G. Thorleifsson, Simulating four-dimensional simplicial gravity using degenerate triangulations, Phys. Rev. D 59 (1999) 124008 [hep-lat/9810049] [INSPIRE].ADSMATHGoogle Scholar
  39. [39]
    G. Thorleifsson, Three-dimensional simplicial gravity and degenerate triangulations, Nucl. Phys. B 538 (1999) 278 [hep-lat/9807026] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    U. Pachner, P.l. homeomorphic manifolds are equivalent by elementary shellings, Eur. J. Comb. 12 (1991) 129.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    J. Alexander, General relativity without coordinates, Ann. Math 31 (1930) 292.ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    B.V. de Bakker and J. Smit, Curvature and scaling in 4D dynamical triangulation, Nucl. Phys. B 439 (1995) 239 [hep-lat/9407014] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B.V. De Bakker and J. Smit, Volume dependence of the phase boundary in 4D dynamical triangulation, Phys. Lett. B 334 (1994) 304 [hep-lat/9405013] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Ambjørn, J. Jurkiewicz and R. Loll, Lorentzian and Euclidean quantum gravityanalytical and numerical results, NATO Sci. Ser. C 556 (2000) 381 [hep-th/0001124] [INSPIRE].MathSciNetMATHGoogle Scholar
  45. [45]
    S. Catterall, J.B. Kogut, R. Renken and G. Thorleifsson, Baby universes in 4D dynamical triangulation, Phys. Lett. B 366 (1996) 72 [hep-lat/9509004] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    T. Jonsson and J.F. Wheater, The spectral dimension of the branched polymer phase of two-dimensional quantum gravity, Nucl. Phys. B 515 (1998) 549 [hep-lat/9710024] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    J. Ambjørn, D. Boulatov, J.L. Nielsen, J. Rolf and Y. Watabiki, The spectral dimension of 2D quantum gravity, JHEP 02 (1998) 010 [hep-th/9801099] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    S. Blundell and K. Blundell, Concepts in thermal physics, Oxford University Press, Oxford U.K. (2008).MATHGoogle Scholar
  49. [49]
    J. Smit, Continuum interpretation of the dynamical-triangulation formulation of quantum Einstein gravity, JHEP 08 (2013) 016 [arXiv:1304.6339] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    M. Newman and G. Barkema, Monte Carlo methods in statistical physics, Oxford University Press, Oxford U.K. (1999).MATHGoogle Scholar
  51. [51]
    H. Meyer-Ortmanns, Phase transitions in quantum chromodynamics, Rev. Mod. Phys. 68 (1996) 473 [hep-lat/9608098] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Warner, S. Catterall and R. Renken, Phase structure of 3D dynamical triangulations with a boundary, in Toward the theory of everything, MRST’98, Montreal Canada (1998), pg. 212 [INSPIRE].
  53. [53]
    R.L. Renken, S.M. Catterall and J.B. Kogut, Phase structure of dynamical triangulation models in three-dimensions, Nucl. Phys. B 523 (1998) 553 [hep-lat/9712011] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral dimension of the universe, Phys. Rev. Lett. 95 (2005) 171301 [hep-th/0505113] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Reuter and F. Saueressig, Fractal space-times under the microscope: a renormalization group view on Monte Carlo data, JHEP 12 (2011) 012 [arXiv:1110.5224] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    S. Rechenberger and F. Saueressig, The R 2 phase-diagram of QEG and its spectral dimension, Phys. Rev. D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].ADSGoogle Scholar
  57. [57]
    D.N. Coumbe and J. Jurkiewicz, Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations, JHEP 03 (2015) 151 [arXiv:1411.7712] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  58. [58]
    A. Shomer, A pedagogical explanation for the non-renormalizability of gravity, arXiv:0709.3555 [INSPIRE].
  59. [59]
    T. Banks, TASI lectures on holographic space-time, SUSY and gravitational effective field theory, arXiv:1007.4001 [INSPIRE].
  60. [60]
    R. Percacci and G.P. Vacca, Asymptotic safety, emergence and minimal length, Class. Quant. Grav. 27 (2010) 245026 [arXiv:1008.3621] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    K. Falls and D.F. Litim, Black hole thermodynamics under the microscope, Phys. Rev. D 89 (2014) 084002 [arXiv:1212.1821] [INSPIRE].ADSGoogle Scholar
  62. [62]
    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    J. Ambjørn, J. Jurkiewicz and C.F. Kristjansen, Quantum gravity, dynamical triangulations and higher derivative regularization, Nucl. Phys. B 393 (1993) 601 [hep-th/9208032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.SUPA, School of Physics and AstronomyUniversity of GlasgowGlasgowUnited Kingdom
  2. 2.Department of PhysicsSyracuse UniversitySyracuseUnited States
  3. 3.Institute of PhysicsJagiellonian UniversityKrakowPoland

Personalised recommendations