Exact finite volume expectation values of local operators in excited states

Open Access
Regular Article - Theoretical Physics

Abstract

We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.

Keywords

Exact S-Matrix Bethe Ansatz Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT, Nucl. Phys. B 552 (1999) 624 [hep-th/9902075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    C.-N. Yang and C.P. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys. 10 (1969) 1115 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three State Potts and Lee-yang Models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Karowski and P. Weisz, Exact Form-Factors in (1+1)-Dimensional Field Theoretic Models with Soliton Behavior, Nucl. Phys. B 139 (1978) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.N. Kirillov and F.A. Smirnov, A Representation of the Current Algebra Connected With the SU(2) Invariant Thirring Model, Phys. Lett. B 198 (1987) 506 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    F. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys. 14 (1992) 1.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    D. Fioretto and G. Mussardo, Quantum Quenches in Integrable Field Theories, New J. Phys. 12 (2010) 055015 [arXiv:0911.3345] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    B. Pozsgay, Mean values of local operators in highly excited Bethe states, J. Stat. Mech. (2011) P01011 [arXiv:1009.4662] [INSPIRE].
  9. [9]
    M. Kormos, G. Mussardo and A. Trombettoni, Expectation Values in the Lieb-Liniger Bose Gas, Phys. Rev. Lett. 103 (2009) 210404 [arXiv:0909.1336] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Kormos, G. Mussardo and A. Trombettoni, Local Correlations in the Super Tonks-Girardeau Gas, Phys. Rev. A 83 (2011) 013617 [arXiv:1008.4383] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. Pozsgay, Local correlations in the 1D Bose gas from a scaling limit of the XXZ chain, J. Stat. Mech. (2011) P11017 [arXiv:1108.6224] [INSPIRE].
  12. [12]
    B. Doyon, Finite-temperature form-factors in the free Majorana theory, J. Stat. Mech. (2005) P11006 [hep-th/0506105] [INSPIRE].
  13. [13]
    Y. Chen and B. Doyon, Form factors in equilibrium and non-equilibrium mixed states of the Ising model, J. Stat. Mech. (2014) P09021 [arXiv:1305.0518] [INSPIRE].
  14. [14]
    S.L. Lukyanov, Finite temperature expectation values of local fields in the sinh-Gordon model, Nucl. Phys. B 612 (2001) 391 [hep-th/0005027] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    N. Grosjean, J.M. Maillet and G. Niccoli, On the form factors of local operators in the lattice sine-Gordon model, J. Stat. Mech. (2012) P10006 [arXiv:1204.6307] [INSPIRE].
  16. [16]
    M. Jimbo, T. Miwa and F. Smirnov, Hidden Grassmann structure in the XXZ model V: sine-Gordon model, Lett. Math. Phys. 96 (2011) 325 [arXiv:1007.0556] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S. Negro and F. Smirnov, On one-point functions for sinh-Gordon model at finite temperature, Nucl. Phys. B 875 (2013) 166 [arXiv:1306.1476] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Negro, On sinh-Gordon Thermodynamic Bethe Ansatz and fermionic basis, Int. J. Mod. Phys. A 29 (2014) 1450111 [arXiv:1404.0619] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    B. Pozsgay and G. Takács, Form-factors in finite volume I: Form-factor bootstrap and truncated conformal space, Nucl. Phys. B 788 (2008) 167 [arXiv:0706.1445] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys. B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    F.H.L. Essler and R.M. Konik, Finite-temperature lineshapes in gapped quantum spin chains, Phys. Rev. B 78 (2008) 100403 [arXiv:0711.2524] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F.H.L. Essler and R.M. Konik, Finite-temperature dynamical correlations in massive integrable quantum field theories, J. Stat. Mech. (2009) P09018 [INSPIRE].
  23. [23]
    B. Pozsgay and G. Takács, Form factor expansion for thermal correlators, J. Stat. Mech. (2010) P11012 [arXiv:1008.3810] [INSPIRE].
  24. [24]
    I.M. Szecsenyi and G. Takács, Spectral expansion for finite temperature two-point functions and clustering, J. Stat. Mech. (2012) P12002 [arXiv:1210.0331] [INSPIRE].
  25. [25]
    D.A. Tennant et al., Anomalous dynamical line shapes in a quantum magnet at finite temperature, Phys. Rev. B 85 (2012) 014402.ADSCrossRefGoogle Scholar
  26. [26]
    J. Wu, M. Kormos and Q. Si, Finite temperature spin dynamics in a perturbed quantum critical Ising chain with an E 8 symmetry Phys. Rev. Lett. 113 (2014) 247201 [arXiv:1403.7222].ADSCrossRefGoogle Scholar
  27. [27]
    M. Kormos and B. Pozsgay, One-Point Functions in Massive Integrable QFT with Boundaries, JHEP 04 (2010) 112 [arXiv:1002.2783] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    G. Mussardo, Infinite-time Average of Local Fields in an Integrable Quantum Field Theory after a Quantum Quench, Phys. Rev. Lett. 111 (2013) 100401 [arXiv:1308.4551] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Sotiriadis, G. Takács and G. Mussardo, Boundary State in an Integrable Quantum Field Theory Out of Equilibrium, Phys. Lett. B 734 (2014) 52 [arXiv:1311.4418] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    B. Bertini, D. Schuricht and F.H.L. Essler, Quantum quench in the sine-Gordon model, J. Stat. Mech. (2014) P10035 [arXiv:1405.4813] [INSPIRE].
  31. [31]
    T. Klose and T. McLoughlin, Comments on World-Sheet Form Factors in AdS/CFT, J. Phys. A 47 (2014) 055401 [arXiv:1307.3506] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  32. [32]
    Z. Bajnok, R.A. Janik and A. Wereszczynski, HHL correlators, orbit averaging and form factors, JHEP 09 (2014) 050 [arXiv:1404.4556] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    Z. Bajnok, F. Buccheri, L. Hollo, J. Konczer and G. Takács, Finite volume form factors in the presence of integrable defects, Nucl. Phys. B 882 (2014) 501 [arXiv:1312.5576] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    B. Pozsgay, Lüschers mu-term and finite volume bootstrap principle for scattering states and form factors, Nucl. Phys. B 802 (2008) 435 [arXiv:0803.4445] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    G. Takács, Determining matrix elements and resonance widths from finite volume: The dangerous μ-terms, JHEP 11 (2011) 113 [arXiv:1110.2181] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    A.I. Bugrij, The correlation function in two-dimensional Ising model on the finite size lattice. 1., Theor. Math. Phys. 127 (2001) 528 [hep-th/0011104] [INSPIRE].CrossRefMATHGoogle Scholar
  38. [38]
    A.I. Bugrij, Form-factor representation of the correlation function of the two-dimensional Ising model on a cylinder, hep-th/0107117 [INSPIRE].
  39. [39]
    B. Pozsgay, Form factor approach to diagonal finite volume matrix elements in Integrable QFT, JHEP 07 (2013) 157 [arXiv:1305.3373] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    J. Teschner, On the spectrum of the Sinh-Gordon model in finite volume, Nucl. Phys. B 799 (2008) 403 [hep-th/0702214] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable quantum field theories in finite volume: Excited state energies, Nucl. Phys. B 489 (1997) 487 [hep-th/9607099] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639 [hep-th/9607167] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    P. Dorey and R. Tateo, Excited states in some simple perturbed conformal field theories, Nucl. Phys. B 515 (1998) 575 [hep-th/9706140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    V.P. Yurov and A.B. Zamolodchikov, Truncated conformal space approach to scaling Lee-Yang model, Int. J. Mod. Phys. A 5 (1990) 3221 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    I.M. Szécsényi, G. Takács and G.M.T. Watts, One-point functions in finite volume/temperature: a case study, JHEP 08 (2013) 094 [arXiv:1304.3275] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B 253 (1991) 391 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    F. Ravanini, R. Tateo and A. Valleriani, Dynkin TBAs, Int. J. Mod. Phys. A 8 (1993) 1707 [hep-th/9207040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    J.S. Maybee, D.D. Olesky, P. van den Driessche and G. Wiener, Matrices, digraphs, and determinants, SIAM J. Matrix Anal. Appl. 10 (1989) 500.MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    R.M. Konik and Y. Adamov, Numerical Renormalization Group for Continuum One-Dimensional Systems, Phys. Rev. Lett. 98 (2007) 147205.ADSCrossRefGoogle Scholar
  51. [51]
    R.M. Konik and Y. Adamov, A Numerical Renormalization Group for Continuum One-Dimensional Systems, J. Stat. Mech. (2008) P03011 [cond-mat/0701605] [INSPIRE].
  52. [52]
    P. Giokas and G. Watts, The renormalisation group for the truncated conformal space approach on the cylinder, arXiv:1106.2448 [INSPIRE].
  53. [53]
    G.M.T. Watts, On the renormalisation group for the boundary Truncated Conformal Space Approach, Nucl. Phys. B 859 (2012) 177 [arXiv:1104.0225] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    M. Lencsés and G. Takács, Excited state TBA and renormalized TCSA in the scaling Potts model, JHEP 09 (2014) 052 [arXiv:1405.3157] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Beria, G.P. Brandino, L. Lepori, R.M. Konik and G. Sierra, Truncated Conformal Space Approach for Perturbed Wess-Zumino-Witten SU(2)k Models, Nucl. Phys. B 877 (2013) 457 [arXiv:1301.0084] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    A. Coser, M. Beria, G.P. Brandino, R.M. Konik and G. Mussardo, Truncated Conformal Space Approach for 2D Landau-Ginzburg Theories, J. Stat. Mech. (2014) P12010 [arXiv:1409.1494] [INSPIRE].
  57. [57]
    M. Hogervorst, S. Rychkov and B.C. van Rees, Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?, Phys. Rev. D 91 (2015) 025005 [arXiv:1409.1581] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    S. Rychkov and L.G. Vitale, Hamiltonian Truncation Study of the Φ4 Theory in Two Dimensions, arXiv:1412.3460 [INSPIRE].
  59. [59]
    T.R. Klassen and E. Melzer, On the relation between scattering amplitudes and finite size mass corrections in QFT, Nucl. Phys. B 362 (1991) 329 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    F. Buccheri and G. Takács, Finite temperature one-point functions in non-diagonal integrable field theories: the sine-Gordon model, JHEP 03 (2014) 026 [arXiv:1312.2623] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    V.A. Fateev, The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories, Phys. Lett. B 324 (1994) 45 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    Mathematica, Wolfram Research, Inc., Champaign, Illinois, version 10.0 ed., (2014).Google Scholar
  65. [65]
    G.Z. Feher, T. Palmai and G. Takács, sine-Gordon multi-soliton form factors in finite volume, Phys. Rev. D 85 (2012) 085005 [arXiv:1112.6322] [INSPIRE].
  66. [66]
    T. Pálmai and G. Takács, Diagonal multisoliton matrix elements in finite volume, Phys. Rev. D 87 (2013) 045010 [arXiv:1209.6034] [INSPIRE].Google Scholar
  67. [67]
    A. Koubek, The space of local operators in perturbed conformal field theories, Nucl. Phys. B 435 (1995) 703 [hep-th/9501029] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    A. Koubek and G. Mussardo, On the operator content of the sinh-Gordon model, Phys. Lett. B 311 (1993) 193 [hep-th/9306044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    B. Pozsgay and G. Takács, Characterization of resonances using finite size effects, Nucl. Phys. B 748 (2006) 485 [hep-th/0604022] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    V. Fateev, S.L. Lukyanov, A.B. Zamolodchikov and A.B. Zamolodchikov, Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories, Nucl. Phys. B 516 (1998) 652 [hep-th/9709034] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    A. Fring, G. Mussardo and P. Simonetti, Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory, Nucl. Phys. B 393 (1993) 413 [hep-th/9211053] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.MTA-BME “Momentum” Statistical Field Theory Research GroupBudapestHungary
  2. 2.Department of Mathematical SciencesDurham UniversityDurhamUnited Kingdom
  3. 3.Institute of Theoretical PhysicsEötvös Loránd UniversityBudapestHungary
  4. 4.Department of Theoretical PhysicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations