Advertisement

Signals of a superlight gravitino at the LHC

  • Fabio Maltoni
  • Antony Martini
  • Kentarou Mawatari
  • Bettina Oexl
Open Access
Regular Article - Theoretical Physics

Abstract

Very light gravitinos could be produced at a sizeable rate at colliders and have been searched for in the mono-photon or mono-jet plus missing momentum signature. Strategies for enhancing the signal over background and interpretations of the experimental results are typically obtained within an effective field theory approach where all SUSY particles except the gravitino are heavy and are not produced resonantly. We extend this approach to a simplified model that includes squarks and gluinos in the TeV range. In such a case, the jet(s)-plus-missing-momentum signature can be generated through three different concurring mechanisms: gravitino-pair production with an extra jet, associated gravitino production with a squark or a gluino, or squark/gluino pair production with their subsequent decay to a gravitino and a jet. By using a matrix-element parton-shower merging procedure, we take into account all the relevant production processes consistently, explore the SUSY parameter space with the LHC Run-I data set, and give prospects for the Run II. We also consider the reach of other signatures involving electroweak particles, e.g., the mono-photon, -Z, or -W plus missing momentum. The current mono-jet and mono-photon LHC analyses are interpreted to set a lower bound on the gravitino mass. We show how the limit of m3/2 > 1.7 × 10−13 GeV obtained in the effective field theory hypothesis is modified when the squarks and/or the gluino are in the TeV range.

Keywords

Supersymmetry Phenomenology Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [Erratum ibid. 1401 (2014) 162] [arXiv:1308.2679] [INSPIRE].
  2. [2]
    J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE].
  3. [3]
    S. Malik et al., Interplay and characterization of dark matter searches at colliders and in direct detection experiments, arXiv:1409.4075 [INSPIRE].
  4. [4]
    OPAL collaboration, G. Abbiendi et al., Photonic events with missing energy in e + e collisions at \( \sqrt{s}=189 \) GeV, Eur. Phys. J. C 18 (2000) 253 [hep-ex/0005002] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ALEPH collaboration, A. Heister et al., Single photon and multiphoton production in e + e collisions at \( \sqrt{s} \) up to 209 GeV, Eur. Phys. J. C 28 (2003) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L3 collaboration, P. Achard et al., Single photon and multiphoton events with missing energy in e + e collisions at LEP, Phys. Lett. B 587 (2004) 16 [hep-ex/0402002] [INSPIRE].ADSGoogle Scholar
  7. [7]
    DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    O. Nachtmann, A. Reiter and M. Wirbel, Single jet and single photon production in proton-anti-proton collisions and e + e annihilation in a supersymmetric model, Z. Phys. C 27 (1985) 577 [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Brignole, F. Feruglio and F. Zwirner, Signals of a superlight gravitino at e + e colliders when the other superparticles are heavy, Nucl. Phys. B 516 (1998) 13 [Erratum ibid. B 555 (1999)653] [hep-ph/9711516] [INSPIRE].
  10. [10]
    Particle Data Group collaboration, K. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001.Google Scholar
  11. [11]
    P. Fayet, Lower limit on the mass of a light gravitino from e + e annihilation experiments, Phys. Lett. B 175 (1986) 471 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D.A. Dicus, S. Nandi and J. Woodside, A new source of single photons from Z 0 decay, Phys. Lett. B 258 (1991) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.L. Lopez, D.V. Nanopoulos and A. Zichichi, Supersymmetric photonic signals at LEP, Phys. Rev. Lett. 77 (1996) 5168 [hep-ph/9609524] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.L. Lopez, D.V. Nanopoulos and A. Zichichi, Single photon signals at LEP in supersymmetric models with a light gravitino, Phys. Rev. D 55 (1997) 5813 [hep-ph/9611437] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Baek, S.C. Park and J.-h. Song, Kaluza-Klein gravitino production with a single photon at e + e colliders, Phys. Rev. D 66 (2002) 056004 [hep-ph/0206008] [INSPIRE].ADSGoogle Scholar
  16. [16]
    K. Mawatari, B. Oexl and Y. Takaesu, Associated production of light gravitinos in e + e and e γ collisions, Eur. Phys. J. C 71 (2011) 1783 [arXiv:1106.5592] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    CDF collaboration, T. Affolder et al., Limits on gravitino production and new processes with large missing transverse energy in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 85 (2000) 1378 [hep-ex/0003026] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    CDF collaboration, D. Acosta et al., Limits on extra dimensions and new particle production in the exclusive photon and missing energy signature in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 89 (2002) 281801 [hep-ex/0205057] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    D0 collaboration, V.M. Abazov et al., Search for large extra dimensions via single photon plus missing energy final states at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 011601 [arXiv:0803.2137] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    CDF collaboration, T. Aaltonen et al., Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 181602 [arXiv:0807.3132] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Brignole, F. Feruglio, M.L. Mangano and F. Zwirner, Signals of a superlight gravitino at hadron colliders when the other superparticles are heavy, Nucl. Phys. B 526 (1998) 136 [Erratum ibid. B 582 (2000) 759-761] [hep-ph/9801329] [INSPIRE].
  22. [22]
    CMS collaboration, Search for new phenomena in monophoton final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1410.8812 [INSPIRE].
  23. [23]
    ATLAS collaboration, Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012008 [arXiv:1411.1559] [INSPIRE].ADSGoogle Scholar
  24. [24]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
  25. [25]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1408.3583 [INSPIRE].
  26. [26]
    ATLAS collaboration, Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 012004 [arXiv:1404.0051] [INSPIRE].ADSGoogle Scholar
  27. [27]
    ATLAS collaboration, Search for new particles in events with one lepton and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 09 (2014) 037 [arXiv:1407.7494] [INSPIRE].ADSGoogle Scholar
  28. [28]
    CMS collaboration, Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1408.2745 [INSPIRE].
  29. [29]
    CMS collaboration, Search for monotop signatures in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 114 (2015) 101801 [arXiv:1410.1149] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D.A. Dicus, S. Nandi and J. Woodside, Collider signals of a superlight gravitino, Phys. Rev. D 41 (1990) 2347 [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Drees and J. Woodside, Signals for a superlight gravitino at the LHC, IS-J-4137, C90-10-04 (1990).Google Scholar
  32. [32]
    D.A. Dicus and S. Nandi, New collider bound on light gravitino mass, Phys. Rev. D 56 (1997) 4166 [hep-ph/9611312] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Kim, J.L. Lopez, D.V. Nanopoulos, R. Rangarajan and A. Zichichi, Light gravitino production at hadron colliders, Phys. Rev. D 57 (1998) 373 [hep-ph/9707331] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Klasen and G. Pignol, New results for light gravitinos at hadron colliders: Tevatron limits and LHC perspectives, Phys. Rev. D 75 (2007) 115003 [hep-ph/0610160] [INSPIRE].ADSGoogle Scholar
  35. [35]
    K. Mawatari and Y. Takaesu, HELAS and MadGraph with goldstinos, Eur. Phys. J. C 71 (2011) 1640 [arXiv:1101.1289] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P. de Aquino, F. Maltoni, K. Mawatari and B. Oexl, Light gravitino production in association with gluinos at the LHC, JHEP 10 (2012) 008 [arXiv:1206.7098] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    M. Papucci, A. Vichi and K.M. Zurek, Monojet versus the rest of the world I: t-channel models, JHEP 11 (2014) 024 [arXiv:1402.2285] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, A gravitino-goldstino high-energy equivalence theorem, Phys. Lett. B 215 (1988) 313 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, High-energy equivalence theorem in spontaneously broken supergravity, Phys. Rev. D 39 (1989) 2281 [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    D.V. Volkov and V.A. Soroka, Higgs effect for Goldstone particles with spin 1/2, JETP Lett. 18 (1973) 312 [INSPIRE].ADSMATHGoogle Scholar
  42. [42]
    S. Deser and B. Zumino, Broken supersymmetry and supergravity, Phys. Rev. Lett. 38 (1977) 1433 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Mawatari and B. Oexl, Monophoton signals in light gravitino production at e + e colliders, Eur. Phys. J. C 74 (2014) 2909 [arXiv:1402.3223] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Alwall et al., Computing decay rates for new physics theories with FeynRules and MadGraph5/aMC@NLO, arXiv:1402.1178 [INSPIRE].
  47. [47]
    N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman diagram computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar
  53. [53]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Gonçalves-Netto, D. López-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated squark and gluino production to next-to-leading order, Phys. Rev. D 87 (2013) 014002 [arXiv:1211.0286] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  58. [58]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    C. Petersson, A. Romagnoni and R. Torre, Higgs decay with monophoton + MET signature from low scale supersymmetry breaking, JHEP 10 (2012) 016 [arXiv:1203.4563] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Fabio Maltoni
    • 1
  • Antony Martini
    • 1
  • Kentarou Mawatari
    • 2
  • Bettina Oexl
    • 2
  1. 1.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Theoretische Natuurkunde and IIHE/ELEMVrije Universiteit Brussel, and International Solvay InstitutesBrusselsBelgium

Personalised recommendations